Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ERK activation drives intestinal tumorigenesis in Apcmin/+ mice

Abstract

Toll-like receptor (TLR) signaling is essential for intestinal tumorigenesis in Apcmin/+ mice, but the mechanisms by which Apc enhances tumor growth are unknown. Here we show that microflora-MyD88-ERK signaling in intestinal epithelial cells (IECs) promotes tumorigenesis by increasing the stability of the c-Myc oncoprotein. Activation of ERK (extracellular signal–related kinase) phosphorylates c-Myc, preventing its ubiquitination and subsequent proteasomal degradation. Accordingly, Apcmin/+/Myd88−/− mice have lower phospho-ERK (p-ERK) levels and fewer and smaller IEC tumors than Apcmin/+ mice. MyD88 (myeloid differentiation primary response gene 88)-independent activation of ERK by epidermal growth factor (EGF) increased p-ERK and c-Myc and restored the multiple intestinal neoplasia (Min) phenotype in Apcmin/+/Myd88−/− mice. Administration of an ERK inhibitor suppressed intestinal tumorigenesis in EGF-treated Apcmin/+/Myd88−/− and Apcmin/+ mice and increased their survival. Our data reveal a new facet of oncogene-environment interaction, in which microflora-induced TLR activation regulates oncogene expression and related IEC tumor growth in a susceptible host.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic disruption of Myd88 in Apcmin/+ mice suppresses proliferation and enhances apoptosis of IECs.
Figure 2: Myd88 signaling in hematopoietic cells is not required for tumorigenesis in Apcmin/+ mice.
Figure 3: MyD88 regulates c-Myc expression levels.
Figure 4: TLR signaling via MyD88 stabilizes c-Myc protein in IECs through activation of ERK.
Figure 5: Activation of ERK restores the Min phenotype in Apcmin/+/Myd88−/− mice.
Figure 6: Activation of ERK is essential for the Min phenotype in Apcmin/+ mice.

Similar content being viewed by others

References

  1. Michelsen, K.S. & Arditi, M. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr. Opin. Hematol. 14, 48–54 (2007).

    Article  CAS  Google Scholar 

  2. Sanderson, I.R. & Walker, W.A. TLRs in the Gut I. The role of TLRs/Nods in intestinal development and homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G6–G10 (2007).

    Article  CAS  Google Scholar 

  3. de Visser, K.E., Eichten, A. & Coussens, L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6, 24–37 (2006).

    Article  CAS  Google Scholar 

  4. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  Google Scholar 

  5. Lin, W.W. & Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117, 1175–1183 (2007).

    Article  CAS  Google Scholar 

  6. Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein Myd88. Science 317, 124–127 (2007).

    Article  CAS  Google Scholar 

  7. Oshima, M. et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl. Acad. Sci. USA 92, 4482–4486 (1995).

    Article  CAS  Google Scholar 

  8. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  Google Scholar 

  9. Weinstein, I.B. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  Google Scholar 

  10. Hurlin, P.J. & Huang, J. The MAX-interacting transcription factor network. Semin. Cancer Biol. 16, 265–274 (2006).

    Article  CAS  Google Scholar 

  11. Wilkins, J.A. & Sansom, O.J. C-Myc is a critical mediator of the phenotypes of Apc loss in the intestine. Cancer Res. 68, 4963–4966 (2008).

    Article  CAS  Google Scholar 

  12. Sansom, O.J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).

    Article  CAS  Google Scholar 

  13. Yekkala, K. & Baudino, T.A. Inhibition of intestinal polyposis with reduced angiogenesis in Apcmin/+ mice due to decreases in c-Myc expression. Mol. Cancer Res. 5, 1296–1303 (2007).

    Article  CAS  Google Scholar 

  14. Ignatenko, N.A. et al. Role of c-Myc in intestinal tumorigenesis of the Apcmin/+mouse. Cancer Biol. Ther. 5, 1658–1664 (2006).

    Article  CAS  Google Scholar 

  15. Beutler, B. et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 353–389 (2006).

    Article  CAS  Google Scholar 

  16. Boulares, A.H. et al. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J. Biol. Chem. 274, 22932–22940 (1999).

    Article  CAS  Google Scholar 

  17. Kelsall, B.L. & Rescigno, M. Mucosal dendritic cells in immunity and inflammation. Nat. Immunol. 5, 1091–1095 (2004).

    Article  CAS  Google Scholar 

  18. Cario, E. et al. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Pathol. 160, 165–173 (2002).

    Article  CAS  Google Scholar 

  19. Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 8, 1327–1336 (2006).

    Article  CAS  Google Scholar 

  20. Cho, H.J. et al. IFN-alpha beta promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J. Immunol. 168, 4907–4913 (2002).

    Article  CAS  Google Scholar 

  21. Apte, R.N. et al. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev. 25, 387–408 (2006).

    Article  CAS  Google Scholar 

  22. Pedersen, G., Andresen, L., Matthiessen, M.W., Rask-Madsen, J. & Brynskov, J. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin. Exp. Immunol. 141, 298–306 (2005).

    Article  CAS  Google Scholar 

  23. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    Article  CAS  Google Scholar 

  24. Sears, R.C. The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3, 1133–1137 (2004).

    Article  CAS  Google Scholar 

  25. Vervoorts, J., Luscher-Firzlaff, J. & Luscher, B. The ins and outs of MYC regulation by posttranslational mechanisms. J. Biol. Chem. 281, 34725–34729 (2006).

    Article  CAS  Google Scholar 

  26. Chang, W.C. et al. Sulindac sulfone is most effective in modulating beta-catenin-mediated transcription in cells with mutant APC. Ann. NY Acad. Sci. 1059, 41–55 (2005).

    Article  CAS  Google Scholar 

  27. Barrett, S.D. et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg. Med. Chem. Lett. 18, 6501–6504 (2008).

    Article  CAS  Google Scholar 

  28. Seo, T.C., Spallholz, J.E., Yun, H.K. & Kim, S.W. Selenium-enriched garlic and cabbage as a dietary selenium source for broilers. J. Med. Food 11, 687–692 (2008).

    Article  CAS  Google Scholar 

  29. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  Google Scholar 

  30. Shacter, E. & Weitzman, S.A. Chronic inflammation and cancer. Oncology 16, 217–226, 229; discussion 230–232 (2002).

    PubMed  Google Scholar 

  31. Fox, J.G. & Wang, T.C. Inflammation, atrophy, and gastric cancer. J. Clin. Invest. 117, 60–69 (2007).

    Article  CAS  Google Scholar 

  32. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  Google Scholar 

  33. He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  34. Dang, C.V. et al. The c-Myc target gene network. Semin. Cancer Biol. 16, 253–264 (2006).

    Article  CAS  Google Scholar 

  35. Hann, S.R. Role of post-translational modifications in regulating c-Myc proteolysis, transcriptional activity and biological function. Semin. Cancer Biol. 16, 288–302 (2006).

    Article  CAS  Google Scholar 

  36. Gregory, M.A. & Hann, S.R. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol. Cell. Biol. 20, 2423–2435 (2000).

    Article  CAS  Google Scholar 

  37. Dakour, J., Li, H., Chen, H. & Morrish, D.W. EGF promotes development of a differentiated trophoblast phenotype having c-myc and junB proto-oncogene activation. Placenta 20, 119–126 (1999).

    Article  CAS  Google Scholar 

  38. Wickenden, J.A. et al. Colorectal cancer cells with the BRAF(V600E) mutation are addicted to the ERK1/2 pathway for growth factor-independent survival and repression of BIM. Oncogene 27, 7150–7161 (2008).

    Article  CAS  Google Scholar 

  39. Sansom, O.J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 18, 1385–1390 (2004).

    Article  CAS  Google Scholar 

  40. Dove, W.F. et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res. 57, 812–814 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Charos for animal breeding and S. Shenouda for tissue processing. This work was supported by US National Institutes of Health grants AI068685, CA133702, DK35108 and DK080506.

Author information

Authors and Affiliations

Authors

Contributions

E.R. designed the study; S.H.L. and J.L. performed the signaling experiments; C.S., L.-L.H., S.H. and G.S.S. performed the in vivo studies; M.C. generated the bone marrow chimeras; J.B., J.L. and J.G.-N. performed immunohistochemistry and flow cytometry; S.H.L., M.C., N.V., J.L. and E.R. analyzed the data; and S.H.L., J.L. and E.R. wrote the manuscript.

Corresponding author

Correspondence to Eyal Raz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1241 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Hu, LL., Gonzalez-Navajas, J. et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nat Med 16, 665–670 (2010). https://doi.org/10.1038/nm.2143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing