Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Overcoming obstacles to developing new analgesics

Abstract

Despite substantial investment by the pharmaceutical industry over several decades, there has been little progress in developing new, efficacious and safe analgesics. As a result, many large pharmaceutical companies are leaving the area of pain medication. Nevertheless, the chances of success could increase if analgesic drug development strategy changed. To achieve such a paradigm shift we must understand why development of drugs for pain relief is so challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The standard analgesic drug development pathway.
Figure 2: A proposed new analgesic drug development pathway.

Similar content being viewed by others

References

  1. Basbaum, A.I., Bautista, D.M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  Google Scholar 

  2. Costigan, M., Scholz, J. & Woolf, C.J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    Article  CAS  Google Scholar 

  3. Lacroix-Fralish, M.L. & Mogil, J.S. Progress in genetic studies of pain and analgesia. Annu. Rev. Pharmacol. Toxicol. 49, 97–121 (2009).

    Article  CAS  Google Scholar 

  4. McMahon, S.B. & Malcangio, M. Current challenges in glia-pain biology. Neuron 64, 46–54 (2009).

    Article  CAS  Google Scholar 

  5. Häuser, W., Petzke, F. & Sommer, C. Comparative efficacy and harms of duloxetine, milnacipran, and pregabalin in fibromyalgia syndrome. J. Pain 11, 505–521 (2010).

    Article  Google Scholar 

  6. Moore, R.A., Straube, S., Wiffen, P.J., Derry, S. & McQuay, H.J. Pregabalin for acute and chronic pain in adults. Cochrane Database Syst. Rev. CD007076 (2009).

  7. Jensen, T.S., Madsen, C.S. & Finnerup, N.B. Pharmacology and treatment of neuropathic pains. Curr. Opin. Neurol. 22, 467–474 (2009).

    Article  CAS  Google Scholar 

  8. Dworkin, R.H. et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin. Proc. 85, S3–S14 (2010).

    Article  CAS  Google Scholar 

  9. Attal, N. et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur. J. Neurol. 17, 1113–e88 (2010).

    Article  CAS  Google Scholar 

  10. Helfand, M. & Freeman, M. Assessment and management of acute pain in adult medical inpatients: a systematic review. Pain Med. 10, 1183–1199 (2009).

    Article  Google Scholar 

  11. Straube, S., Derry, S., Moore, R.A. & McQuay, H.J. Pregabalin in fibromyalgia: meta-analysis of efficacy and safety from company clinical trial reports. Rheumatology (Oxford) 49, 706–715 (2010).

    Article  CAS  Google Scholar 

  12. Finnerup, N.B., Otto, M., Jensen, T.S. & Sindrup, S.H. An evidence-based algorithm for the treatment of neuropathic pain. MedGenMed 9, 36 (2007).

    PubMed  PubMed Central  Google Scholar 

  13. Kissin, I. The development of new analgesics over the past 50 years: a lack of real breakthrough drugs. Anesth. Analg. 110, 780–789 (2010).

    Article  CAS  Google Scholar 

  14. Latremoliere, A. & Woolf, C.J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    Article  Google Scholar 

  15. Woolf, C.J. & Salter, M.W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    Article  CAS  Google Scholar 

  16. Bradley, L.A. Pathophysiology of fibromyalgia. Am. J. Med. 122, S22–S30 (2009).

    Article  Google Scholar 

  17. Chen, Y. Advances in the pathophysiology of tension-type headache: from stress to central sensitization. Curr. Pain Headache Rep. 13, 484–494 (2009).

    Article  Google Scholar 

  18. Williams, D.A. & Clauw, D.J. Understanding fibromyalgia: lessons from the broader pain research community. J. Pain 10, 777–791 (2009).

    Article  Google Scholar 

  19. Saito, Y.A., Mitra, N. & Mayer, E.A. Genetic approaches to functional gastrointestinal disorders. Gastroenterology 138, 1276–1285 (2010).

    Article  CAS  Google Scholar 

  20. Fischer, T.Z. & Waxman, S.G. Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann. NY Acad. Sci. 1184, 196–207 (2010).

    Article  CAS  Google Scholar 

  21. Tegeder, I. Current evidence for a modulation of low back pain by human genetic variants. J. Cell. Mol. Med. 13, 1605–1619 (2009).

    Article  Google Scholar 

  22. Kehlet, H., Jensen, T.S. & Woolf, C.J. Persistent postsurgical pain: risk factors and prevention. Lancet 367, 1618–1625 (2006).

    Article  Google Scholar 

  23. Van Zee, A. The promotion and marketing of oxycontin: commercial triumph, public health tragedy. Am. J. Public Health 99, 221–227 (2009).

    Article  Google Scholar 

  24. Schneider, M.F. et al. Integrating nine prescription opioid analgesics and/or four signal detection systems to summarize statewide prescription drug abuse in the United States in 2007. Pharmacoepidemiol. Drug Saf. 18, 778–790 (2009).

    Article  Google Scholar 

  25. Grosser, T., Yu, Y. & Fitzgerald, G.A. Emotion recollected in tranquility: lessons learned from the COX-2 saga. Annu. Rev. Med. 61, 17–33 (2010).

    Article  CAS  Google Scholar 

  26. Aquina, C.T., Marques-Baptista, A., Bridgeman, P. & Merlin, M.A. OxyContin abuse and overdose. Postgrad. Med. 121, 163–167 (2009).

    Article  Google Scholar 

  27. McCormick, C.G. et al. Case histories in pharmaceutical risk management. Drug Alcohol Depend. 105 Suppl 1, S42–S55 (2009).

    Article  Google Scholar 

  28. March, F., Jones, N.G. & McMahon, S.B. Future treatment strategies for neuropathic pain. Handb. Exp. Pharmacol. 194, 589–615 (2009).

    Article  Google Scholar 

  29. Dib-Hajj, S.D., Cummins, T.R., Black, J.A. & Waxman, S.G. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci. 33, 325–347 (2010).

    Article  CAS  Google Scholar 

  30. Scholz, J. et al. A novel tool for the assessment of pain: validation in low back pain. PLoS Med. 6, e1000047 (2009).

    Article  Google Scholar 

  31. Rappaport, B.A., Cerny, I. & Sanhai, W.R. ACTION on the prevention of chronic pain after surgery: public-private partnerships, the future of analgesic drug development. Anesthesiology 112, 509–510 (2010).

    Article  Google Scholar 

  32. Whiteside, G.T., Adedoyin, A. & Leventhal, L. Predictive validity of animal pain models? A comparison of the pharmacokinetic-pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology 54, 767–775 (2008).

    Article  CAS  Google Scholar 

  33. Weinstein, J.N. et al. Surgical vs nonoperative treatment for lumbar disk herniation: the Spine Patient Outcomes Research Trial (SPORT) observational cohort. J. Am. Med. Assoc. 296, 2451–2459 (2006).

    Article  CAS  Google Scholar 

  34. Tracey, I. & Bushnell, M.C. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J. Pain 10, 1113–1120 (2009).

    Article  Google Scholar 

  35. Baliki, M.N., Geha, P.Y., Fields, H.L. & Apkarian, A.V. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66, 149–160 (2010).

    Article  CAS  Google Scholar 

  36. Becerra, L. et al. Diffuse optical tomography activation in the somatosensory cortex: specific activation by painful vs. non-painful thermal stimuli. PLoS ONE 4, e8016 (2009).

    Article  Google Scholar 

  37. Watson, A. et al. Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain 145, 24–30 (2009).

    Article  Google Scholar 

  38. Dworkin, R.H. et al. Research design considerations for confirmatory chronic pain clinical trials: IMMPACT recommendations. Pain 149, 177–193 (2010).

    Article  Google Scholar 

  39. Dworkin, R.H. et al. Interpreting the clinical importance of group differences in chronic pain clinical trials: IMMPACT recommendations. Pain 146, 238–244 (2009).

    Article  Google Scholar 

  40. Sharma, U., Griesing, T., Emir, B. & Young, J.P. Jr. Time to onset of neuropathic pain reduction: a retrospective analysis of data from nine controlled trials of pregabalin for painful diabetic peripheral neuropathy and postherpetic neuralgia. Am. J. Ther. published online, doi:10.1097/MJT.0b013e3181d5e4f3 (10 April 2010).

  41. Binshtok, A.M., Bean, B.P. & Woolf, C.J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449, 607–610 (2007).

    Article  CAS  Google Scholar 

  42. Petrovic, P. et al. A prefrontal non-opioid mechanism in placebo analgesia. Pain 150, 59–65 (2010).

    Article  Google Scholar 

  43. Pollo, A. & Benedetti, F. The placebo response: neurobiological and clinical issues of neurological relevance. Prog. Brain Res. 175, 283–294 (2009).

    Article  Google Scholar 

  44. Eippert, F., Finsterbusch, J., Bingel, U. & Buchel, C. Direct evidence for spinal cord involvement in placebo analgesia. Science 326, 404 (2009).

    Article  CAS  Google Scholar 

  45. Mogil, J.S. Animal models of pain: progress and challenges. Nat. Rev. Neurosci. 10, 283–294 (2009).

    Article  CAS  Google Scholar 

  46. Ioannidis, J.P. Why most published research findings are false. PLoS Med. 2, e124 (2005).

    Article  Google Scholar 

  47. Bauer, C.S. et al. The anti-allodynic alpha(2)delta ligand pregabalin inhibits the trafficking of the calcium channel alpha(2)delta-1 subunit to presynaptic terminals in vivo. Biochem. Soc. Trans. 38, 525–528 (2010).

    Article  CAS  Google Scholar 

  48. Woolf, C.J., Safieh-Garabedian, B., Ma, Q.P., Crilly, P. & Winter, J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62, 327–331 (1994).

    Article  CAS  Google Scholar 

  49. Garami, A. et al. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia. J. Neurosci. 30, 1435–1440 (2010).

    Article  CAS  Google Scholar 

  50. Tegeder, I. et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12, 1269–1277 (2006).

    Article  CAS  Google Scholar 

  51. Lötsch, J., Klepstad, P., Doehring, A. & Dale, O.A. GTP cyclohydrolase 1 genetic variant delays cancer pain. Pain 148, 103–106 (2010).

    Article  Google Scholar 

  52. Campbell, C.M. et al. Polymorphisms in the GTP cyclohydrolase gene (GCH1) are associated with ratings of capsaicin pain. Pain 141, 114–118 (2009).

    Article  CAS  Google Scholar 

  53. Reimann, F. et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc. Natl. Acad. Sci. USA 107, 5148–5153 (2010).

    Article  CAS  Google Scholar 

  54. Estacion, M. et al. NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079–11088 (2008).

    Article  CAS  Google Scholar 

  55. Goldberg, Y.P. et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin. Genet. 71, 311–319 (2007).

    Article  CAS  Google Scholar 

  56. Cox, J.J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

    Article  CAS  Google Scholar 

  57. Neely, G.G. et al. A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell 141, 142–153 (2010).

    Article  CAS  Google Scholar 

  58. Pospisilik, J.A. et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140, 148–160 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank E. Forster, P. Vallance, S. Tate, R. Mannion, B. Wainger and J. Sprague for useful and constructive criticism and comments. This work was supported by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford J Woolf.

Ethics declarations

Competing interests

Clifford J. Woolf declares grant support from GlaxoSmithKline and Endo Pharmaceuticals and is a consultant to Endo Pharmaceuticals, Taisho Pharmaceutical and Solace Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woolf, C. Overcoming obstacles to developing new analgesics. Nat Med 16, 1241–1247 (2010). https://doi.org/10.1038/nm.2230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing