Focus on Pain

Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans

Journal name:
Nature Medicine
Volume:
16,
Pages:
1277–1283
Year published:
DOI:
doi:10.1038/nm.2229
Published online

Abstract

The perception of pain is subject to powerful influences. Understanding how these are mediated at a neuroanatomical and neurobiological level provides us with valuable information that has a direct impact on our ability to harness positive and minimize negative effects therapeutically, as well as optimize clinical trial designs when developing new analgesics. This is particularly relevant for placebo and nocebo effects. New research findings have directly contributed to an increased understanding of how placebo and nocebo effects are produced and what biological and psychological factors influence variances in the magnitude of the effect. The findings have relevance for chronic pain states and other disorders, where abnormal functioning of crucial brain regions might affect analgesic outcome even in the normal therapeutic setting.

At a glance

Figures

  1. Factors influencing pain perception and the neural basis for endogenous pain modulation, placebo and nocebo effects.
    Figure 1: Factors influencing pain perception and the neural basis for endogenous pain modulation, placebo and nocebo effects.

    (a,b) Schematic illustration of key brain regions involved in generating a pain experience (green, blue and purple) with core brain regions that comprise the cognitive and descending pain modulatory networks (blue) (a) and a description of the various factors that influence the pain experience listed in the text boxes (b). (a) The regions highlighted in blue indicate the core descending endogenous pain and cognitive modulatory networks that many of these factors, including placebo and nocebo effects, use to elicit their influence on nociceptive processing and resultant pain perception. The hippocampal region (purple) is important for amplifying pain experiences during nocebo or increased anxiety. (c) Schematic illustration indicating where endogenous opioid and dopamine neurotransmission occurs in the human brain during placebo analgesia. Note the overlap with many of the brain regions involved in cognitive modulation of pain, and for some brain regions (NAc) there is a bidirectional response of both opioid and dopamine release that produces either placebo (increased release) or nocebo (decreased release) effects. vmPFC, ventromedial prefrontal cortex; Amy, amygdala; Hypo, hypothalamus; Hipp, hippocampus; S2, secondary somatosensory cortex; S1, primary somatosensory cortex; dlPFC, dorsolateral prefrontal cortex; rACC, rostral anterior cingulate cortex; mACC, midanterior cingulate cortex; CCK, cholecystokinin.

  2. The patient environment.
    Figure 2: The patient environment.

    (ac) Schematic of a treatment environment where both drug and therapeutic context interact to produce resultant pain report (a), where without drug only the therapeutic context influences pain report (b) and where, due to conditions that affect the key brain regions listed in Figure 1, there is only the drug and its pharmacodynamics able to influence the pain report (c).

References

  1. Tracey, I. & Mantyh, P.W. The cerebral signature for pain perception and its modulation. Neuron 55, 377391 (2007).
  2. Finniss, D.G., Kaptchuk, T.J., Miller, F. & Benedetti, F. Biological, clinical and ethical advances of placebo effects. Lancet 375, 686695 (2010).
  3. Haygarth, J. Of the Imagination, as a Cause and as a Cure of Disorders of the Body, Exemplified by Fictitious Tractors, and Epidemical Convulsions. (Crutwell, Bath, England, 1801).
  4. Beecher, H.K. The powerful placebo. J. Am. Med. Assoc. 159, 16021606 (1955).
  5. Miller, F.G. & Kaptchuk, T.J. The power of context: reconceptualizing the placebo effect. J. R. Soc. Med. 101, 222225 (2008).
  6. Price, D.D., Finniss, D.G. & Benedetti, F. A comprehensive review of the placebo effect: recent advances and current thought. Annu. Rev. Psychol. 59, 565590 (2008).
  7. Colloca, L., Benedetti, F. & Porro, C.A. Experimental designs and brain mapping approaches for studying the placebo analgesic effect. Eur. J. Appl. Physiol. 102, 371380 (2008).
  8. Benedetti, F. Mechanisms of placebo and placebo-related effects across diseases and treatments. Annu. Rev. Pharmacol. Toxicol. 48, 3360 (2008).
  9. Borsook, D., Sava, S. & Becerra, L. The pain imaging revolution: advancing pain into the 21st century. Neuroscientist 16, 171185 (2010).
  10. Wiech, K., Ploner, M. & Tracey, I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306313 (2008).
  11. Wiech, K. & Tracey, I. The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47, 987994 (2009).
  12. Apkarian, A.V., Baliki, M.N. & Geha, P.Y. Towards a theory of chronic pain. Prog. Neurobiol. 87, 8197 (2009).
  13. Apkarian, A.V., Bushnell, M.C., Treede, R.D. & Zubieta, J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463484 (2005).
  14. Fields, H. Central nervous system mechanisms of pain modulation. in Textbook of Pain 4th edn. (ed. Wall, P.D. & Melzack, R.) 125142 (Churchill Livingstone, London, 2005).
  15. Basbaum, A.I. & Fields, H.L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7, 309338 (1984).
  16. Gebhart, G.F. Descending modulation of pain. Neurosci. Biobehav. Rev. 27, 729737 (2004).
  17. Suzuki, R., Rygh, L.J. & Dickenson, A.H. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol. Sci. 25, 613617 (2004).
  18. Porreca, F., Ossipov, M.H. & Gebhart, G.F. Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319325 (2002).
  19. Gwilym, S.E. et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 61, 12261234 (2009).
  20. Lee, M.C., Zambreanu, L., Menon, D.K. & Tracey, I. Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J. Neurosci. 28, 1164211649 (2008).
  21. Tracey, I. et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci. 22, 27482752 (2002).
  22. Valet, M. et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—an fMRI analysis. Pain 109, 399408 (2004).
  23. Lorenz, J., Minoshima, S. & Casey, K.L. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126, 10791091 (2003).
  24. Seifert, F. et al. Medial prefrontal cortex activity is predictive for hyperalgesia and pharmacological antihyperalgesia. J. Neurosci. 29, 61676175 (2009).
  25. Ochsner, K.N. & Gross, J.J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242249 (2005).
  26. Kalisch, R. et al. Anxiety reduction through detachment: subjective, physiological and neural effects. J. Cogn. Neurosci. 17, 874883 (2005).
  27. Kalisch, R., Wiech, K., Herrmann, K. & Dolan, R.J. Neural correlates of self-distraction from anxiety and a process model of cognitive emotion regulation. J. Cogn. Neurosci. 18, 12661276 (2006).
  28. Wiech, K. et al. Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J. Neurosci. 26, 1150111509 (2006).
  29. Wager, T.D., Davidson, M.L., Hughes, B.L., Lindquist, M.A. & Ochsner, K.N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 10371050 (2008).
  30. Ochsner, K.N. et al. Your pain or mine? Common and distinct neural systems supporting the perception of pain in self and other. Soc. Cogn. Affect. Neurosci. 3, 144160 (2008).
  31. Phelps, E.A., Delgado, M.R., Nearing, K.I. & LeDoux, J.E. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43, 897905 (2004).
  32. Quirk, G.J., Garcia, R. & Gonzalez-Lima, F. Prefrontal mechanisms in extinction of conditioned fear. Biol. Psychiatry 60, 337343 (2006).
  33. Ploghaus, A. et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci. 21, 98969903 (2001).
  34. Dias, R., Robbins, T.W. & Roberts, A.C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 6972 (1996).
  35. Vase, L., Robinson, M.E., Verne, G.N. & Price, D.D. The contributions of suggestion, desire, and expectation to placebo effects in irritable bowel syndrome patients. An empirical investigation. Pain 105, 1725 (2003).
  36. Koyama, T., McHaffie, J.G., Laurienti, P.J. & Coghill, R.C. The subjective experience of pain: where expectations become reality. Proc. Natl. Acad. Sci. USA 102, 1295012955 (2005).
  37. Keltner, J.R. et al. Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J. Neurosci. 26, 44374443 (2006).
  38. Ploghaus, A. et al. Dissociating pain from its anticipation in the human brain. Science 284, 19791981 (1999).
  39. Fairhurst, M., Wiech, K., Dunckley, P. & Tracey, I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101110 (2007).
  40. Benedetti, F., Amanzio, M., Casadio, C., Oliaro, A. & Maggi, G. Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain 71, 135140 (1997).
  41. Benedetti, F., Amanzio, M., Vighetti, S. & Asteggiano, G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J. Neurosci. 26, 1201412022 (2006).
  42. Kong, J. et al. A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. J. Neurosci. 28, 1335413362 (2008).
  43. Kaptchuk, T.J. et al. “Maybe I made up the whole thing”: placebos and patients' experiences in a randomized controlled trial. Cult. Med. Psychiatry 33, 382411 (2009).
  44. Voudouris, N.J., Peck, C.L. & Coleman, G. The role of conditioning and verbal expectancy in the placebo response. Pain 43, 121128 (1990).
  45. Ader, R., Cohen, N. & Felten, D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet 345, 99103 (1995).
  46. Price, D.D. et al. An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain 83, 147156 (1999).
  47. Montgomery, G.H. & Kirsch, I. Classical conditioning and the placebo effect. Pain 72, 107113 (1997).
  48. Morton, D.L., Watson, A., El-Deredy, W. & Jones, A.K. Reproducibility of placebo analgesia: Effect of dispositional optimism. Pain 146, 194198 (2009).
  49. Benedetti, F., Arduino, C. & Amanzio, M. Somatotopic activation of opioid systems by target-directed expectations of analgesia. J. Neurosci. 19, 36393648 (1999).
  50. Amanzio, M. & Benedetti, F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J. Neurosci. 19, 484494 (1999).
  51. Pacheco-López, G., Engler, H., Niemi, M.B. & Schedlowski, M. Expectations and associations that heal: Immunomodulatory placebo effects and its neurobiology. Brain Behav. Immun. 20, 430446 (2006).
  52. Goebel, M.U. et al. Behavioral conditioning of immunosuppression is possible in humans. FASEB J. 16, 18691873 (2002).
  53. Benedetti, F. et al. Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J. Neurosci. 23, 43154323 (2003).
  54. Levine, J.D., Gordon, N.C. & Fields, H.L. The mechanism of placebo analgesia. Lancet 2, 654657 (1978).
  55. Lipman, J.J. et al. Peak B endorphin concentration in cerebrospinal fluid: reduced in chronic pain patients and increased during the placebo response. Psychopharmacology (Berl.) 102, 112116 (1990).
  56. Levine, J.D. & Gordon, N.C. Influence of the method of drug administration on analgesic response. Nature 312, 755756 (1984).
  57. Gracely, R.H., Dubner, R., Wolskee, P.J. & Deeter, W.R. Placebo and naloxone can alter post-surgical pain by separate mechanisms. Nature 306, 264265 (1983).
  58. Benedetti, F. The opposite effects of the opiate antagonist naloxone and the cholecystokinin antagonist proglumide on placebo analgesia. Pain 64, 535543 (1996).
  59. Benedetti, F. & Amanzio, M. The neurobiology of placebo analgesia: from endogenous opioids to cholecystokinin. Prog. Neurobiol. 52, 109125 (1997).
  60. Benedetti, F., Amanzio, M. & Maggi, G. Potentiation of placebo analgesia by proglumide. Lancet 346, 1231 (1995).
  61. Petrovic, P., Kalso, E., Petersson, K.M. & Ingvar, M. Placebo and opioid analgesia—imaging a shared neuronal network. Science 295, 17371740 (2002).
  62. Wager, T.D. et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303, 11621167 (2004).
  63. Kong, J. et al. Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J. Neurosci. 26, 381388 (2006).
  64. Bingel, U., Lorenz, J., Schoell, E., Weiller, C. & Buchel, C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120, 815 (2006).
  65. Zubieta, J.K. et al. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci. 25, 77547762 (2005).
  66. Wager, T.D., Scott, D.J. & Zubieta, J.K. Placebo effects on human μ-opioid activity during pain. Proc. Natl. Acad. Sci. USA 104, 1105611061 (2007).
  67. Eippert, F. et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533543 (2009).
  68. Zubieta, J.K., Yau, W.Y., Scott, D.J. & Stohler, C.S. Belief or need? Accounting for individual variations in the neurochemistry of the placebo effect. Brain Behav. Immun. 20, 1526 (2006).
  69. Scott, D.J. et al. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch. Gen. Psychiatry 65, 220231 (2008).
  70. Eippert, F., Finsterbusch, J., Bingel, U. & Buchel, C. Direct evidence for spinal cord involvement in placebo analgesia. Science 326, 404 (2009).
  71. Wager, T.D., Matre, D. & Casey, K.L. Placebo effects in laser-evoked pain potentials. Brain Behav. Immun. 20, 219230 (2006).
  72. Lorenz, J. et al. Cortical correlates of false expectations during pain intensity judgments–a possible manifestation of placebo/nocebo cognitions. Brain Behav. Immun. 19, 283295 (2005).
  73. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87115 (2006).
  74. Kalivas, P.W., Churchill, L. & Romanides, A. Involvement of the pallidal-thalamocortical circuit in adaptive behavior. Ann. NY Acad. Sci. 877, 6470 (1999).
  75. de la Fuente-Fernández, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson′s disease. Science 293, 11641166 (2001).
  76. Volkow, N.D. et al. Effects of expectation on the brain metabolic responses to methylphenidate and to its placebo in non-drug abusing subjects. Neuroimage 32, 17821792 (2006).
  77. Mayberg, H.S. et al. The functional neuroanatomy of the placebo effect. Am. J. Psychiatry 159, 728737 (2002).
  78. Petrovic, P. et al. Placebo in emotional processing–induced expectations of anxiety relief activate a generalized modulatory network. Neuron 46, 957969 (2005).
  79. Scott, D.J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55, 325336 (2007).
  80. Schweinhardt, P., Seminowicz, D.A., Jaeger, E., Duncan, G.H. & Bushnell, M.C. The anatomy of the mesolimbic reward system: a link between personality and the placebo analgesic response. J. Neurosci. 29, 48824887 (2009).
  81. Baliki, M.N., Geha, P.Y., Fields, H.L. & Apkarian, A.V. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66, 149160 (2010).
  82. Wasan, A.D., Kaptchuk, T.J., Davar, G. & Jamison, R.N. The association between psychopathology and placebo analgesia in patients with discogenic low back pain. Pain Med. 7, 217228 (2006).
  83. Geers, A.L., Helfer, S.G., Kosbab, K., Weiland, P.E. & Landry, S.J. Reconsidering the role of personality in placebo effects: dispositional optimism, situational expectations, and the placebo response. J. Psychosom. Res. 58, 121127 (2005).
  84. Gelfland, D.M., Gelfland, S. & Radin, M. Some personality factors associated with placebo responsivity. Psychol. Rep. 17, 555562 (1965).
  85. Lieberman, M.D. et al. The neural correlates of placebo effects: a disruption account. Neuroimage 22, 447455 (2004).
  86. Price, D.D., Craggs, J., Verne, G.N., Perlstein, W.M. & Robinson, M.E. Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain 127, 6372 (2007).
  87. Tracey, I. & Bushnell, C. How neuroimaging studies have challenged us to rethink: is chronic pain a disease?. J. Pain 10, 11131120 (2009).
  88. May, A. Chronic pain may change the structure of the brain. Pain 137, 715 (2008).
  89. Apkarian, A.V. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 1041010415 (2004).
  90. Seminowicz, D.A. et al. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 47, 10071014 (2009).
  91. Metz, A.E., Yau, H.J., Centeno, M.V., Apkarian, A.V. & Martina, M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc. Natl. Acad. Sci. USA 106, 24232428 (2009).
  92. Gündel, H. et al. Altered cerebral response to noxious heat stimulation in patients with somatoform pain disorder. Pain 137, 413421 (2008).
  93. Apkarian, A.V., Thomas, P.S., Krauss, B.R. & Szeverenyi, N.M. Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci. Lett. 311, 193197 (2001).
  94. Jones, A.K., Watabe, H., Cunningham, V.J. & Jones, T. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur. J. Pain 8, 479485 (2004).
  95. Harris, R.E. et al. Decreased central mu-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 1000010006 (2007).
  96. Wood, P.B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 35763582 (2007).
  97. Wood, P.B. et al. Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J. Pain 8, 5158 (2007).
  98. Maarrawi, J. et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 127, 183194 (2007).
  99. Benedetti, F. et al. Loss of expectation-related mechanisms in Alzheimer′s disease makes analgesic therapies less effective. Pain 121, 133144 (2006).
  100. Pollo, A. & Benedetti, F. The placebo response: neurobiological and clinical issues of neurological relevance. Prog. Brain Res. 175, 283294 (2009).
  101. Waber, R.L., Shiv, B., Carmon, Z. & Ariely, D. Commercial features of placebo and therapeutic efficacy. J. Am. Med. Assoc. 299, 10161017 (2008).
  102. Leknes, S. & Tracey, I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 9, 314320 (2008).

Download references

Author information

Affiliations

  1. Nuffield Department of Anaesthetics and Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK.

    • Irene Tracey

Competing financial interests

The author declares no competing financial interests.

Corresponding author

Correspondence to:

Author details

Additional data