Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Degeneration and repair in central nervous system disease

Abstract

Divergent disease triggers in neurodegeneration may induce convergent endogenous pathways in neuronal, glial and vascular elements as the central nervous system (CNS) attempts to compensate, remodel and recover. Dissecting these multicellular mechanisms and the integrative responses in cerebral blood flow and metabolism may allow us to understand the balance between injury and repair, validate new targets and define therapeutic time windows for neurodegeneration.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endogenous responses, cofactors and therapeutic time windows in neurodegeneration.

References

  1. Lo, E.H., Dalkara, T. & Moskowitz, M.A. Nat. Rev. Neurosci. 4, 399–415 (2003).

    Article  CAS  Google Scholar 

  2. Moskowitz, M.A., Lo, E.H. & Iadecola, C. Neuron 67, 181–198 (2010).

    Article  CAS  Google Scholar 

  3. Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C. & Gage, F.H. Cell 140, 918–934 (2010).

    Article  CAS  Google Scholar 

  4. Block, M.L. & Hong, J.S. Prog. Neurobiol. 76, 77–98 (2005).

    Article  CAS  Google Scholar 

  5. Lucin, K.M. & Wyss-Coray, T. Neuron 64, 110–122 (2009).

    Article  CAS  Google Scholar 

  6. Medzhitov, R. Nature 454, 428–435 (2008).

    Article  CAS  Google Scholar 

  7. Betarbet, R. et al. J. Neurosci. 17, 6761–6768 (1997).

    Article  CAS  Google Scholar 

  8. Blanchard, V. et al. J. Neurochem. 64, 1669–1679 (1995).

    Article  CAS  Google Scholar 

  9. Tandé, D. et al. Brain 129, 1194–1200 (2006).

    Article  Google Scholar 

  10. Porritt, M.J. et al. Lancet 356, 44–45 (2000).

    Article  CAS  Google Scholar 

  11. Huot, P., Levesque, M. & Parent, A. Brain 130, 222–232 (2007).

    Article  Google Scholar 

  12. Hyman, B.T., Kromer, L.J. & Van Hoesen, G.W. Ann. Neurol. 21, 259–267 (1987).

    Article  CAS  Google Scholar 

  13. Leuba, G. et al. Neurobiol. Dis. 30, 408–419 (2008).

    Article  CAS  Google Scholar 

  14. Agosta, F. et al. Hum. Brain Mapp. 31, 515–525 (2010).

    PubMed  Google Scholar 

  15. Iacono, D. et al. Neurology 73, 665–673 (2009).

    Article  CAS  Google Scholar 

  16. Selkoe, D.J. Behav. Brain Res. 192, 106–113 (2008).

    Article  CAS  Google Scholar 

  17. Abramov, E. et al. Nat. Neurosci. 12, 1567–1576 (2009).

    Article  CAS  Google Scholar 

  18. Pearson, H.A. & Peers, C. J. Physiol. (Lond.) 575, 5–10 (2006).

    Article  CAS  Google Scholar 

  19. Palop, J.J. et al. Neuron 55, 697–711 (2007).

    Article  CAS  Google Scholar 

  20. Koch, P., Kokaia, Z., Lindvall, O. & Brustle, O. Lancet Neurol. 8, 819–829 (2009).

    Article  Google Scholar 

  21. Lazarov, O. & Marr, R.A. Exp. Neurol. 223, 267–281 (2010).

    Article  CAS  Google Scholar 

  22. Marlatt, M.W. & Lucassen, P.J. Curr. Alzheimer Res. 7, 113–125 (2010).

    Article  CAS  Google Scholar 

  23. Zacchigna, S., Lambrechts, D. & Carmeliet, P. Nat. Rev. Neurosci. 9, 169–181 (2008).

    Article  CAS  Google Scholar 

  24. Madri, J.A. J. Physiol. Pharmacol. 60 Suppl 4, 95–104 (2009).

    PubMed  Google Scholar 

  25. Barcia, C., Emborg, M.E., Hirsch, E.C. & Herrero, M.T. Front. Biosci. 9, 277–282 (2004).

    Article  CAS  Google Scholar 

  26. Desai, B.S., Schneider, J.A., Li, J.L., Carvey, P.M. & Hendey, B. J. Neural Transm. 116, 587–597 (2009).

    Article  CAS  Google Scholar 

  27. Holley, J.E., Newcombe, J., Whatmore, J.L. & Gutowski, N.J. Neurosci. Lett. 470, 65–70 (2010).

    Article  CAS  Google Scholar 

  28. Vagnucci, A.H. Jr. & Li, W.W. Lancet 361, 605–608 (2003).

    Article  CAS  Google Scholar 

  29. Zlokovic, B.V. Trends Neurosci. 28, 202–208 (2005).

    Article  CAS  Google Scholar 

  30. Cantara, S. et al. FASEB J. 18, 1943–1945 (2004).

    Article  CAS  Google Scholar 

  31. Jin, H.K., Bae, J.S., Furuya, S. & Carter, J.E. Cell Prolif. 42, 571–586 (2009).

    Article  CAS  Google Scholar 

  32. Ilieva, H., Polymenidou, M. & Cleveland, D.W. J. Cell Biol. 187, 761–772 (2009).

    Article  CAS  Google Scholar 

  33. Rosenberg, P.A. & Aizenman, E. Neurosci. Lett. 103, 162–168 (1989).

    Article  CAS  Google Scholar 

  34. Gu, X. et al. Neuron 46, 433–444 (2005).

    Article  CAS  Google Scholar 

  35. Bradford, J. et al. J. Biol. Chem. 285, 10653–10661 (2010).

    Article  CAS  Google Scholar 

  36. Zhang, M. et al. J. Neurosci. Res. 86, 2848–2856 (2008).

    Article  CAS  Google Scholar 

  37. Nagai, M. et al. Nat. Neurosci. 10, 615–622 (2007).

    Article  CAS  Google Scholar 

  38. Kuchibhotla, K.V., Lattarulo, C.R., Hyman, B.T. & Bacskai, B.J. Science 323, 1211–1215 (2009).

    Article  CAS  Google Scholar 

  39. Iadecola, C. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  Google Scholar 

  40. Iadecola, C. Cell. Mol. Neurobiol. 23, 681–689 (2003).

    Article  CAS  Google Scholar 

  41. Garbuzova-Davis, S. et al. PLoS One 2, e1205 (2007).

    Article  Google Scholar 

  42. Zhong, Z. et al. Nat. Neurosci. 11, 420–422 (2008).

    Article  CAS  Google Scholar 

  43. Varga, A.W. et al. J. Neurol. Sci. 282, 28–33 (2009).

    Article  Google Scholar 

  44. Arai, K. & Lo, E.H. J. Neurosci. 29, 4351–4355 (2009).

    Article  CAS  Google Scholar 

  45. Dugas, J.C. et al. J. Neurosci. 28, 8294–8305 (2008).

    Article  CAS  Google Scholar 

  46. Guo, S. et al. Proc. Natl. Acad. Sci. USA 105, 7582–7587 (2008).

    Article  CAS  Google Scholar 

  47. Arai, K., Jin, G., Navaratna, D. & Lo, E.H. FEBS J. 276, 4644–4652 (2009).

    Article  CAS  Google Scholar 

  48. Carmeliet, P. & Tessier-Lavigne, M. Nature 436, 193–200 (2005).

    Article  CAS  Google Scholar 

  49. Thored, P. et al. Stroke 38, 3032–3039 (2007).

    Article  Google Scholar 

  50. Ohab, J.J., Fleming, S., Blesch, A. & Carmichael, S.T. J. Neurosci. 26, 13007–13016 (2006).

    Article  CAS  Google Scholar 

  51. Taguchi, A. et al. J. Clin. Invest. 114, 330–338 (2004).

    Article  CAS  Google Scholar 

  52. Lo, E.H. Nat. Med. 14, 497–500 (2008).

    Article  CAS  Google Scholar 

  53. Ikonomidou, C. & Turski, L. Lancet Neurol. 1, 383–386 (2002).

    Article  CAS  Google Scholar 

  54. Waetzig, V., Zhao, Y. & Herdegen, T. Prog. Neurobiol. 80, 84–97 (2006).

    Article  CAS  Google Scholar 

  55. Perry, V.H., Nicoll, J.A. & Holmes, C. Nat. Rev. Neurol. 6, 193–201 (2010).

    Article  Google Scholar 

  56. Williams, A.J. & Paulson, H.L. Trends Neurosci. 31, 521–528 (2008).

    Article  CAS  Google Scholar 

  57. Fotuhi, M., Hachinski, V. & Whitehouse, P.J. Nat. Rev. Neurol. 5, 649–658 (2009).

    Article  Google Scholar 

  58. Benatar, M. Neurobiol. Dis. 26, 1–13 (2007).

    Article  CAS  Google Scholar 

  59. de Calignon, A. et al. Nature 464, 1201–1204 (2010).

    Article  CAS  Google Scholar 

  60. Wang, Y., Kruger, U., Mandelkow, E. & Mandelkow, E.M. Neurodegener. Dis. 7, 103–107 (2010).

    Article  CAS  Google Scholar 

  61. Lemere, C.A. & Masliah, E. Nat. Rev. Neurol. 6, 108–119 (2010).

    Article  CAS  Google Scholar 

  62. Zahs, K.R. & Ashe, K.H. Trends Neurosci. 33, 381–399 (2010).

    Article  CAS  Google Scholar 

  63. Hampel, H. et al. Nat. Rev. Drug Discov. 9, 560–574 (2010).

    Article  CAS  Google Scholar 

  64. O'Collins, V.E. et al. Ann. Neurol. 59, 467–477 (2006).

    Article  CAS  Google Scholar 

  65. Fisher, M. et al. Stroke 40, 2244–2250 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The author apologizes to colleagues whose important work could not be directly cited. Because of space limitations, mostly review articles were used as starting points for discussion. Many thanks to B. Bacskai, D. Selkoe, B. Hyman, M. Schwarzschild and M.M. Ning for helpful discussions; and F. Beal, D. Cleveland, E. Mandelkow, W. Robberecht and all participants in the Herrenhausen Symposium on Neurodegeneration for a wonderful educational experience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng H Lo.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, E. Degeneration and repair in central nervous system disease. Nat Med 16, 1205–1209 (2010). https://doi.org/10.1038/nm.2226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing