Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth

Abstract

Disruption of the precise balance of positive and negative molecular regulators of blood and lymphatic vessel growth can lead to myriad diseases. Although dozens of natural inhibitors of hemangiogenesis have been identified, an endogenous selective inhibitor of lymphatic vessel growth has not to our knowledge been previously described. We report the existence of a splice variant of the gene encoding vascular endothelial growth factor receptor-2 (Vegfr-2) that encodes a secreted form of the protein, designated soluble Vegfr-2 (sVegfr-2), that inhibits developmental and reparative lymphangiogenesis by blocking Vegf-c function. Tissue-specific loss of sVegfr-2 in mice induced, at birth, spontaneous lymphatic invasion of the normally alymphatic cornea and hyperplasia of skin lymphatics without affecting blood vasculature. Administration of sVegfr-2 inhibited lymphangiogenesis but not hemangiogenesis induced by corneal suture injury or transplantation, enhanced corneal allograft survival and suppressed lymphangioma cellular proliferation. Naturally occurring sVegfr-2 thus acts as a molecular uncoupler of blood and lymphatic vessels; modulation of sVegfr-2 might have therapeutic effects in treating lymphatic vascular malformations, transplantation rejection and, potentially, tumor lymphangiogenesis and lymphedema (pages 993–994)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of endogenous sVegfr-2, which antagonizes Vegf-c, leads to spontaneous corneal lymphangiogenesis.
Figure 2: sVegfr-2 inhibits reparative corneal lymphangiogenesis and rejection of corneal allografts.
Figure 3: Endogenous Vegf-c and sVegfr-2 selectively modulate corneal lymphangiogenesis.
Figure 4: Loss of sVegfr2 in the skin induces lymphatic hyperplasia.
Figure 5: sVegfr-2 is produced by BECs and skin epithelium and circulates in plasma.
Figure 6: sVEGFR-2 exists in humans and inhibits human lymphangioma cell proliferation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ferrara, N. & Kerbel, R.S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  CAS  Google Scholar 

  2. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  Google Scholar 

  3. Fenwick, A. Waterborne infectious diseases—could they be consigned to history? Science 313, 1077–1081 (2006).

    Article  CAS  Google Scholar 

  4. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single Vegf allele. Nature 380, 435–439 (1996).

    Article  CAS  Google Scholar 

  5. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the Vegf gene. Nature 380, 439–442 (1996).

    Article  CAS  Google Scholar 

  6. Karkkainen, M.J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    Article  CAS  Google Scholar 

  7. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  8. Kendall, R.L. & Thomas, K.A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA 90, 10705–10709 (1993).

    Article  CAS  Google Scholar 

  9. Sela, S. et al. A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type–specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ. Res. 102, 1566–1574 (2008).

    Article  CAS  Google Scholar 

  10. Rajakumar, A. et al. Novel soluble Flt-1 isoforms in plasma and cultured placental explants from normotensive pregnant and preeclamptic women. Placenta 30, 25–34 (2009).

    Article  CAS  Google Scholar 

  11. Ambati, B.K. et al. Corneal avascularity is due to soluble Vegf receptor-1. Nature 443, 993–997 (2006).

    Article  CAS  Google Scholar 

  12. Huang, X., Gottstein, C., Brekken, R.A. & Thorpe, P.E. Expression of soluble Vegf receptor 2 and characterization of its binding by surface plasmon resonance. Biochem. Biophys. Res. Commun. 252, 643–648 (1998).

    Article  CAS  Google Scholar 

  13. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    Article  CAS  Google Scholar 

  14. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 (1996).

    Article  CAS  Google Scholar 

  15. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1–deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  Google Scholar 

  16. Ashery-Padan, R., Marquardt, T., Zhou, X. & Gruss, P. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 14, 2701–2711 (2000).

    Article  CAS  Google Scholar 

  17. Maruyama, K. et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Invest. 115, 2363–2372 (2005).

    Article  CAS  Google Scholar 

  18. Jeltsch, M. et al. Vascular endothelial growth factor (Vegf)/VEGF-C mosaic molecules reveal specificity determinants and feature novel receptor binding patterns. J. Biol. Chem. 281, 12187–12195 (2006).

    Article  CAS  Google Scholar 

  19. Baldwin, M.E. et al. The specificity of receptor binding by vascular endothelial growth factor-d is different in mouse and man. J. Biol. Chem. 276, 19166–19171 (2001).

    Article  CAS  Google Scholar 

  20. Streilein, J.W., Bradley, D., Sano, Y. & Sonoda, Y. Immunosuppressive properties of tissues obtained from eyes with experimentally manipulated corneas. Invest. Ophthalmol. Vis. Sci. 37, 413–424 (1996).

    CAS  PubMed  Google Scholar 

  21. Kirkin, V. et al. Characterization of indolinones which preferentially inhibit VEGF-C– and VEGF-D–induced activation of VEGFR-3 rather than VEGFR-2. Eur. J. Biochem. 268, 5530–5540 (2001).

    Article  CAS  Google Scholar 

  22. Cursiefen, C., Chen, L., Dana, M.R. & Streilein, J.W. Corneal lymphangiogenesis: evidence, mechanisms and implications for corneal transplant immunology. Cornea 22, 273–281 (2003).

    Article  Google Scholar 

  23. Liu, Y., Hamrah, P., Zhang, Q., Taylor, A.W. & Dana, M.R. Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) class II–positive dendritic cells derived from MHC class II–negative grafts. J. Exp. Med. 195, 259–268 (2002).

    Article  CAS  Google Scholar 

  24. Yamagami, S. & Dana, M.R. The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest. Ophthalmol. Vis. Sci. 42, 1293–1298 (2001).

    CAS  PubMed  Google Scholar 

  25. Chen, L. et al. Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat. Med. 10, 813–815 (2004).

    Article  CAS  Google Scholar 

  26. Yoon, Y.S. et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J. Clin. Invest. 111, 717–725 (2003).

    Article  CAS  Google Scholar 

  27. Mäkinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble Vegf receptor-3. Nat. Med. 7, 199–205 (2001).

    Article  Google Scholar 

  28. Karpanen, T. et al. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am. J. Pathol. 169, 708–718 (2006).

    Article  CAS  Google Scholar 

  29. Cao, Y. et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc. Natl. Acad. Sci. USA 95, 14389–14394 (1998).

    Article  CAS  Google Scholar 

  30. Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2–induced lymphangiogenesis in mouse cornea. Proc. Natl. Acad. Sci. USA 99, 8868–8873 (2002).

    Article  CAS  Google Scholar 

  31. Cao, R. et al. Comparative evaluation of FGF-2–, VEGF-A– and VEGF-Cinduced angiogenesis, lymphangiogenesis, vascular fenestrations and permeability. Circ. Res. 94, 664–670 (2004).

    Article  CAS  Google Scholar 

  32. Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 113, 1040–1050 (2004).

    Article  CAS  Google Scholar 

  33. Cursiefen, C. et al. Lymphatic vessels in vascularized human corneas: immunohistochemical investigation using LYVE-1 and podoplanin. Invest. Ophthalmol. Vis. Sci. 43, 2127–2135 (2002).

    PubMed  Google Scholar 

  34. Hamrah, P. et al. Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) on monocytic bone marrow–derived cells in the conjunctiva. Exp. Eye Res. 79, 553–561 (2004).

    Article  CAS  Google Scholar 

  35. Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).

    Article  CAS  Google Scholar 

  36. Bernatchez, P.N., Rollin, S., Soker, S. & Sirois, M.G. Relative effects of VEGF-A and VEGF-C on endothelial cell proliferation, migration and PAF synthesis: role of neuropilin-1. J. Cell. Biochem. 85, 629–639 (2002).

    Article  CAS  Google Scholar 

  37. Roeckl, W. et al. Differential binding characteristics and cellular inhibition by soluble Vegf receptors 1 and 2. Exp. Cell Res. 241, 161–170 (1998).

    Article  CAS  Google Scholar 

  38. Fuh, G., Li, B., Crowley, C., Cunningham, B. & Wells, J.A. Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J. Biol. Chem. 273, 11197–11204 (1998).

    Article  CAS  Google Scholar 

  39. Wiesmann, C. et al. Crystal structure at 1.7 A resolution of Vegf in complex with domain 2 of the Flt-1 receptor. Cell 91, 695–704 (1997).

    Article  CAS  Google Scholar 

  40. Goldman, J., Le, T.X., Skobe, M. & Swartz, M.A. Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ. Res. 96, 1193–1199 (2005).

    Article  CAS  Google Scholar 

  41. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. USA 96, 8551–8556 (1999).

    Article  CAS  Google Scholar 

  42. Ebos, J.M. et al. A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma. Mol. Cancer Res. 2, 315–326 (2004).

    CAS  PubMed  Google Scholar 

  43. Ebos, J.M. et al. Vascular endothelial growth factor–mediated decrease in plasma soluble vascular endothelial growth factor receptor-2 levels as a surrogate biomarker for tumor growth. Cancer Res. 68, 521–529 (2008).

    Article  CAS  Google Scholar 

  44. Ebos, J.M., Lee, C.R., Christensen, J.G., Mutsaers, A.J. & Kerbel, R.S. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc. Natl. Acad. Sci. USA 104, 17069–17074 (2007).

    Article  CAS  Google Scholar 

  45. Kaipainen, A. et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 92, 3566–3570 (1995).

    Article  CAS  Google Scholar 

  46. Huang, H.Y., Ho, C.C., Huang, P.H. & Hsu, S.M. Co-expression of VEGF-C and its receptors, VEGFR-2 and VEGFR-3, in endothelial cells of lymphangioma. Implication in autocrine or paracrine regulation of lymphangioma. Lab. Invest. 81, 1729–1734 (2001).

    Article  CAS  Google Scholar 

  47. Norgall, S. et al. Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas. BMC Cancer 7, 105 (2007).

    Article  Google Scholar 

  48. Wilting, J. et al. Embryonic development and malformation of lymphatic vessels. Novartis Found. Symp. 283, 220–227; discussion 227–229, 238–241 (2007).

    Article  CAS  Google Scholar 

  49. Azar, D.T. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans. Am. Ophthalmol. Soc. 104, 264–302 (2006).

    PubMed  PubMed Central  Google Scholar 

  50. Kerjaschki, D. et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat. Med. 12, 230–234 (2006).

    Article  CAS  Google Scholar 

  51. Brideau, G. et al. Endostatin overexpression inhibits lymphangiogenesis and lymph node metastasis in mice. Cancer Res. 67, 11528–11535 (2007).

    Article  CAS  Google Scholar 

  52. Kojima, T., Azar, D.T. & Chang, J.H. Neostatin-7 regulates bFGF-induced corneal lymphangiogenesis. FEBS Lett. 582, 2515–2520 (2008).

    Article  CAS  Google Scholar 

  53. Bielenberg, D.R. et al. Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J. Clin. Invest. 114, 1260–1271 (2004).

    Article  CAS  Google Scholar 

  54. Oka, M. et al. Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111, 4571–4579 (2008).

    Article  CAS  Google Scholar 

  55. Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7, 192–198 (2001).

    Article  CAS  Google Scholar 

  56. Mandriota, S.J. et al. Vascular endothelial growth factor-C–mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 20, 672–682 (2001).

    Article  CAS  Google Scholar 

  57. Brakenhielm, E. et al. Modulating metastasis by a lymphangiogenic switch in prostate cancer. Int. J. Cancer 121, 2153–2161 (2007).

    Article  CAS  Google Scholar 

  58. He, Y. et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl. Cancer Inst. 94, 819–825 (2002).

    Article  CAS  Google Scholar 

  59. Hirakawa, S. et al. VEGF-C–induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109, 1010–1017 (2007).

    Article  CAS  Google Scholar 

  60. Ando, T. et al. Isolation and characterization of a novel mouse lymphatic endothelial cell line: SV-LEC. Lymphat. Res. Biol. 3, 105–115 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Ashery-Padan (Tel Aviv University), P. Gruss (Max Planck Institute) and D.C. Beebe (Washington University) for LeCre mice, R.K. Nordeen (University of Colorado) for Cre plasmid, K. Miyazono (University of Tokyo) for pVegf-c and J.L. Arbiser (Emory University) and C.D. Kontos (Duke University) for endothelial cell lines; R. King, L. Xu, M. McConnell, K. Emerson, A. Blanford, M. Baker, S. Furlow, M. LaFalce and C. Long for technical assistance; and R. Mohan, F. Cambi, S. Bondada, M. Detmar, M.W. Fannon, T.V. Getchell, R.K. Jain, T.S. Khurana, B.J. Raisler, J.E. Springer, P.A. Pearson, C.W. Vander Kooi, J.G. Woodward, A.M. Rao, G.S. Rao, K. Ambati and L. Garcia for valuable discussions. This work was supported by US National Institutes of Health and National Eye Institute grants EY015422, EY018350 and EY018836 to J.A. and EY017182 and EY017950 to B.K.A.; a Research to Prevent Blindness Lew R. Wassermann Merit Award (J.A.); Physician Scientist Awards (J.A., B.K.A.); a Medical Student Fellowship (R.J.C.A.); a departmental unrestricted grant (J.A.); a University of Kentucky University Research Professorship (J.A.); Fight for Sight (R.J.C.A.); Japan Society for the Promotion of Science for Young Scientists (A.T.); a VA Merit Award (B.K.A.); and the US Department of Defense (B.K.A.). J.A. is also supported by the Doris Duke Distinguished Clinical Scientist Award and the Burroughs Wellcome Fund Clinical Scientist Award in Translational Research and is the Dr. E. Vernon Smith and Eloise C. Smith Macular Degeneration Endowed Chair.

Author information

Authors and Affiliations

Authors

Contributions

R.J.C.A., T.H., W.G.C., M.E.K., S.D., A.T., J.Z.B., K.Y., H.K., M.G.G. and S.C. designed and conducted experiments. R.A.B., J.W., H.A.W. and J.S.A. provided reagents and, with J.C., S.Y., S.A., N.M., M.L.P., M.H., T.U. and B.K.A., participated in planning experiments. J.A. conceived of and directed the project. R.J.C.A. and J.A. wrote the manuscript. All authors had the opportunity to discuss the results and comment on the manuscript.

Corresponding author

Correspondence to Jayakrishna Ambati.

Ethics declarations

Competing interests

J.A. and R.J.C.A. are named as inventors in a patent application to the US Patent and Trademark Office filed by the University of Kentucky surrounding the intellectual property described in this paper (gene and protein sequences and therapeutic application of augmenting or diminishing soluble vascular endothelial growth factor receptor-2 amounts). As employees of the University of Kentucky, they are covered under the distribution of royalties policies of the institution.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-13 and Supplementary Methods (PDF 1391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albuquerque, R., Hayashi, T., Cho, W. et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15, 1023–1030 (2009). https://doi.org/10.1038/nm.2018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing