Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses

Abstract

The intestinal flora may promote colon tumor formation. Here we explore immunologic mechanisms of colonic carcinogenesis by a human colonic bacterium, enterotoxigenic Bacteroides fragilis (ETBF). ETBF that secretes B. fragilis toxin (BFT) causes human inflammatory diarrhea but also asymptomatically colonizes a proportion of the human population. Our results indicate that whereas both ETBF and nontoxigenic B. fragilis (NTBF) chronically colonize mice, only ETBF triggers colitis and strongly induces colonic tumors in multiple intestinal neoplasia (Min) mice. ETBF induces robust, selective colonic signal transducer and activator of transcription-3 (Stat3) activation with colitis characterized by a selective T helper type 17 (TH17) response distributed between CD4+ T cell receptor-αβ (TCRαβ)+ and CD48TCRγδ+ T cells. Antibody-mediated blockade of interleukin-17 (IL-17) as well as the receptor for IL-23, a key cytokine amplifying TH17 responses, inhibits ETBF-induced colitis, colonic hyperplasia and tumor formation. These results show a Stat3- and TH17-dependent pathway for inflammation-induced cancer by a common human commensal bacterium, providing new mechanistic insight into human colon carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ETBF stimulates colonic inflammation and enhances colonic tumor formation in Min mice.
Figure 2: ETBF specifically activates Stat3 in the colons of Min mice.
Figure 3: ETBF, but not NTBF, induces IL-17–producing CD3+CD4+ T lymphocytes and γδ T lymphocytes in the colon lamina propria of Min and WT mice 1 week after NTBF or ETBF inoculation.
Figure 4: Blockade of IL-17 and IL-23R, but not IFN-γ, inhibits ETBF-induced colonic tumor formation in Min mice.
Figure 5: CD4+, but not γδ+, T cell depletion inhibits tumor formation in ETBF-colonized Min mice.

Similar content being viewed by others

References

  1. Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).

    Article  CAS  Google Scholar 

  2. El Serag, H.B. & Rudolph, K.L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557–2576 (2007).

    Article  CAS  Google Scholar 

  3. Greten, F.R. et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  Google Scholar 

  4. Karin, M. & Greten, F.R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5, 749–759 (2005).

    Article  CAS  Google Scholar 

  5. Naugler, W.E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    Article  CAS  Google Scholar 

  6. Naugler, W.E. & Karin, M. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med. 14, 109–119 (2008).

    Article  CAS  Google Scholar 

  7. Yu, H. & Jove, R. The STATs of cancer—new molecular targets come of age. Nat. Rev. Cancer 4, 97–105 (2004).

    Article  CAS  Google Scholar 

  8. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7, 41–51 (2007).

    Article  CAS  Google Scholar 

  9. Erdman, S.E. et al. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am. J. Pathol. 162, 691–702 (2003).

    Article  CAS  Google Scholar 

  10. Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    Article  CAS  Google Scholar 

  11. Weaver, C.T., Hatton, R.D., Mangan, P.R. & Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  Google Scholar 

  12. Laurence, A. & O'Shea, J.J. TH-17 differentiation: of mice and men. Nat. Immunol. 8, 903–905 (2007).

    Article  CAS  Google Scholar 

  13. Cho, J.H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 8, 458–466 (2008).

    Article  CAS  Google Scholar 

  14. Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317, 124–127 (2007).

    Article  CAS  Google Scholar 

  15. Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  Google Scholar 

  16. Hope, M.E., Hold, G.L., Kain, R. & El Omar, E.M. Sporadic colorectal cancer–role of the commensal microbiota. FEMS Microbiol. Lett. 244, 1–7 (2005).

    Article  CAS  Google Scholar 

  17. Sears, C.L. et al. Enterotoxigenic Bacteroides fragilis infection is associated with inflammatory diarrhea. Clin. Infect. Dis. 47, 797–803 (2008).

    Article  CAS  Google Scholar 

  18. Toprak, N.U. et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 12, 782–786 (2006).

    Article  CAS  Google Scholar 

  19. Levy, D.E. & Darnell, J.E., Jr. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  20. Chen, Z. et al. Selective regulatory function of Socs3 in the formation of IL-17–secreting T cells. Proc. Natl. Acad. Sci. USA 103, 8137–8142 (2006).

    Article  CAS  Google Scholar 

  21. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  Google Scholar 

  22. Harris, T.J. et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).

    Article  CAS  Google Scholar 

  23. Ivanov, I.I. et al. The orphan nuclear receptor RORγat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  24. Kortylewski, M. et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15, 114–123 (2009).

    Article  CAS  Google Scholar 

  25. Langowski, J.L. et al. IL-23 promotes tumour incidence and growth. Nature 442, 461–465 (2006).

    Article  CAS  Google Scholar 

  26. Bollrath, J. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15, 91–102 (2009).

    Article  CAS  Google Scholar 

  27. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    Article  CAS  Google Scholar 

  28. de Visser, K.E., Korets, L.V. & Coussens, L.M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).

    Article  CAS  Google Scholar 

  29. Poutahidis, T. et al. Rapid reversal of interleukin-6–dependent epithelial invasion in a mouse model of microbially induced colon carcinoma. Carcinogenesis 28, 2614–2623 (2007).

    Article  CAS  Google Scholar 

  30. Rao, V.P. et al. Proinflammatory CD4+ CD45RBhi lymphocytes promote mammary and intestinal carcinogenesis in ApcMin/+ mice. Cancer Res. 66, 57–61 (2006).

    Article  CAS  Google Scholar 

  31. Müller-Hermelink, N. et al. TNFR1 signaling and IFN-γ signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13, 507–518 (2008).

    Article  Google Scholar 

  32. Koebel, C.M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    Article  CAS  Google Scholar 

  33. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  34. Kullberg, M.C. et al. IL-23 plays a key role in Helicobacter hepaticus–induced T cell–dependent colitis. J. Exp. Med. 203, 2485–2494 (2006).

    Article  CAS  Google Scholar 

  35. Hue, S. et al. Interleukin-23 drives innate and T cell–mediated intestinal inflammation. J. Exp. Med. 203, 2473–2483 (2006).

    Article  CAS  Google Scholar 

  36. Newman, J.V., Kosaka, T., Sheppard, B.J., Fox, J.G. & Schauer, D.B. Bacterial infection promotes colon tumorigenesis in ApcMin/+ mice. J. Infect. Dis. 184, 227–230 (2001).

    Article  CAS  Google Scholar 

  37. Nagamine, C.M. et al. Helicobacter hepaticus infection promotes colon tumorigenesis in the BALB/c-Rag2−/−ApcMin/+ mouse. Infect. Immun. 76, 2758–2766 (2008).

    Article  CAS  Google Scholar 

  38. Maggio-Price, L. et al. Helicobacter infection is required for inflammation and colon cancer in SMAD3-deficient mice. Cancer Res. 66, 828–838 (2006).

    Article  CAS  Google Scholar 

  39. Raffatellu, M. et al. Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 14, 421–428 (2008).

    Article  CAS  Google Scholar 

  40. Niess, J.H., Leithauser, F., Adler, G. & Reimann, J. Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J. Immunol. 180, 559–568 (2008).

    Article  CAS  Google Scholar 

  41. Wu, S., Lim, K.-C., Huang, J., Saidi, R.F. & Sears, C.L. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. USA 95, 14979–14984 (1998).

    Article  CAS  Google Scholar 

  42. Wu, S., Morin, P.J., Maouyo, D. & Sears, C.L. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 124, 392–400 (2003).

    Article  CAS  Google Scholar 

  43. Sears, C.L. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin. Microbiol. Rev. 22, 349–369 (2009).

    Article  CAS  Google Scholar 

  44. Rhee, K.J. et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect. Immun. 77, 1708–1718 (2009).

    Article  CAS  Google Scholar 

  45. Caruso, R. et al. IL-23–mediated regulation of IL-17 production in Helicobacter pylori–infected gastric mucosa. Eur. J. Immunol. 38, 470–478 (2008).

    Article  CAS  Google Scholar 

  46. Boivin, G.P. et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124, 762–777 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Crohn's and Colitis Foundation through a Senior Investigator Award (to C.L.S.) and a Research Fellowship Award (to K.-J.R.), RO1 DK45496 (to C.L.S.), RO1 DK080817 (to C.L.S.), US National Institutes of Health grants (to D.M.P.), Special Projects of Research Excellence grant CA62924, R24 DK64388 (to M. Donowitz, the principal investigator of this grant that provided resource support to this project), RR00171 grant (to D.L.H.), Institutional Training for Pediatricians 5 T32 HD44355 (to G. Dover, the principal investigator of this grant that provided partial salary support to S.R.), Clinical Pharmacology Training Program 2 T32GM066691 (to T. Shapiro, the principal investigator of this grant that provided salary support to F.M.) and F32 DK079509 (to S.R.). This work was also supported by gifts from B. Schwartz, W. and B. Topercer, D. Needle, B. Swartz and the Commonwealth Foundation. D.M.P. is a Januey scholar and holds the Abeloff Chair in Oncology at Johns Hopkins University. We thank J. Wolfe for her assistance with some experiments; L. Myers (formerly Montana State University) for ETBF strain 86-5443-2-2; B. Vogelstein and K. Kinzler (Johns Hopkins University School of Medicine) for Min mice and E. Jaffee (Johns Hopkins University School of Medicine) for GK1.5 antibody.

Author information

Authors and Affiliations

Authors

Contributions

S.W. and K.-J.R. performed the majority of tumorigenesis experiments. E.A., S.R. and E.W. performed Stat experiments. X.W. did most of the mouse breeding and assisted with experiments. H.-R.Y. assisted with conditional CD4 Stat3-KO mouse experiments. D.L.H. evaluated and interpreted the histopathology. F.L.B. contributed the statistical analyses. F.M. performed qRT-PCR experiments. F.H. provided oversight and strategic planning for colonic immunology analyses. D.M.P. and C.L.S. designed the study, reviewed and discussed experiments and wrote the manuscript with input from co-authors.

Corresponding authors

Correspondence to Franck Housseau or Cynthia L Sears.

Supplementary information

Supplementary Text and Figures

Supplementary Figs.1–6 and Supplementary Tables 1 and 2 (PDF 3375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Rhee, KJ., Albesiano, E. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15, 1016–1022 (2009). https://doi.org/10.1038/nm.2015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2015

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing