Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism

Abstract

In salt-sensitive hypertension, the accumulation of Na+ in tissue has been presumed to be accompanied by a commensurate retention of water to maintain the isotonicity of body fluids. We show here that a high-salt diet (HSD) in rats leads to interstitial hypertonic Na+ accumulation in skin, resulting in increased density and hyperplasia of the lymphcapillary network. The mechanisms underlying these effects on lymphatics involve activation of tonicity-responsive enhancer binding protein (TonEBP) in mononuclear phagocyte system (MPS) cells infiltrating the interstitium of the skin. TonEBP binds the promoter of the gene encoding vascular endothelial growth factor-C (VEGF-C, encoded by Vegfc) and causes VEGF-C secretion by macrophages. MPS cell depletion or VEGF-C trapping by soluble VEGF receptor-3 blocks VEGF-C signaling, augments interstitial hypertonic volume retention, decreases endothelial nitric oxide synthase expression and elevates blood pressure in response to HSD. Our data show that TonEBP–VEGF-C signaling in MPS cells is a major determinant of extracellular volume and blood pressure homeostasis and identify VEGFC as an osmosensitive, hypertonicity-driven gene intimately involved in salt-induced hypertension.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymph vessel hyperplasia in response to dietary salt loading.
Figure 2: MPS cells are necessary for the hyperplastic response of the lymphcapillary network to HSD.
Figure 3: MPS depletion leads to augmented volume retention and further blood pressure increase in response to HSD.
Figure 4: MPS cells and VEGF-C modulate eNOS protein expression in response to HSD.
Figure 5: High salt increases TonEBP and VEGF-C mRNA and protein expression in macrophages.

Similar content being viewed by others

References

  1. Adrogué, H.J. & Madias, N.E. Sodium and potassium in the pathogenesis of hypertension. N. Engl. J. Med. 356, 1966–1978 (2007).

    Article  Google Scholar 

  2. Guyton, A.C. et al. Systems analysis of arterial pressure regulation and hypertension. Ann. Biomed. Eng. 1, 254–281 (1972).

    Article  CAS  Google Scholar 

  3. Lifton, R.P., Gharavi, A.G. & Geller, D.S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    Article  CAS  Google Scholar 

  4. Pitts, R.F. in Physiology of the kidney and body fluids (ed. Pitts, R. F.) 11–34 (Year Book Medical Publishers, Chicago, 1974).

    Google Scholar 

  5. Heer, M., Baisch, F., Kropp, J., Gerzer, R. & Drummer, C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am. J. Physiol. Renal Physiol. 278, F585–F595 (2000).

    Article  CAS  Google Scholar 

  6. Titze, J. et al. Long-term sodium balance in humans in a terrestrial space station simulation study. Am. J. Kidney Dis. 40, 508–516 (2002).

    Article  CAS  Google Scholar 

  7. Titze, J. et al. Internal sodium balance in DOCA-salt rats: a body composition study. Am. J. Physiol. Renal Physiol. 289, F793–F802 (2005).

    Article  CAS  Google Scholar 

  8. Titze, J. et al. Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Renal Physiol. 285, F1108–F1117 (2003).

    Article  CAS  Google Scholar 

  9. Ziomber, A. et al. Sodium-, potassium-, chloride- and bicarbonate-related effects on blood pressure and electrolyte homeostasis in deoxycorticosterone acetate-treated rats. Am. J. Physiol. Renal Physiol. 295, F1752–F1763 (2008).

    Article  CAS  Google Scholar 

  10. Go, W.Y., Liu, X., Roti, M.A., Liu, F. & Ho, S.N. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc. Natl. Acad. Sci. USA 101, 10673–10678 (2004).

    Article  CAS  Google Scholar 

  11. Schafflhuber, M. et al. Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats. Am. J. Physiol. Renal Physiol. 292, F1490–F1500 (2007).

    Article  CAS  Google Scholar 

  12. Titze, J. et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am. J. Physiol. Heart Circ. Physiol. 287, H203–H208 (2004).

    Article  CAS  Google Scholar 

  13. Fukuda, S., Yasu, T., Kobayashi, N., Ikeda, N. & Schmid-Schonbein, G.W. Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat. Circ. Res. 95, 100–108 (2004).

    Article  CAS  Google Scholar 

  14. Guzik, T.J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    Article  CAS  Google Scholar 

  15. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    Article  CAS  Google Scholar 

  16. Kerjaschki, D. The crucial role of macrophages in lymphangiogenesis. J. Clin. Invest. 115, 2316–2319 (2005).

    Article  CAS  Google Scholar 

  17. Schoppmann, S.F. et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161, 947–956 (2002).

    Article  CAS  Google Scholar 

  18. Lohela, M., Helotera, H., Haiko, P., Dumont, D.J. & Alitalo, K. Transgenic induction of vascular endothelial growth factor-C is strongly angiogenic in mouse embryos but leads to persistent lymphatic hyperplasia in adult tissues. Am. J. Pathol. 173, 1891–1901 (2008).

    Article  CAS  Google Scholar 

  19. Miyakawa, H., Woo, S.K., Dahl, S.C., Handler, J.S. & Kwon, H.M. Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl. Acad. Sci. USA 96, 2538–2542 (1999).

    Article  CAS  Google Scholar 

  20. Neuhofer, W. & Beck, F.X. Cell survial in the hostile environment of the renal medulla. Annu. Rev. Physiol. 67, 531–555 (2005).

    Article  CAS  Google Scholar 

  21. Kang, K.T., Sullivan, J.C., Sasser, J.M., Imig, J.D. & Pollock, J.S. Novel nitric oxide synthase–dependent mechanism of vasorelaxation in small arteries from hypertensive rats. Hypertension 49, 893–901 (2007).

    Article  CAS  Google Scholar 

  22. Leonard, A.M., Chafe, L.L., Montani, J.P. & Van Vliet, B.N. Increased salt-sensitivity in endothelial nitric oxide synthase–knockout mice. Am. J. Hypertens. 19, 1264–1269 (2006).

    Article  CAS  Google Scholar 

  23. Tolins, J.P. & Shultz, P.J. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt. Kidney Int. 46, 230–236 (1994).

    Article  CAS  Google Scholar 

  24. Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).

    Article  CAS  Google Scholar 

  25. Feng, Y., Venema, V.J., Venema, R.C., Tsai, N. & Caldwell, R.B. VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem. Biophys. Res. Commun. 256, 192–197 (1999).

    Article  CAS  Google Scholar 

  26. He, H. et al. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J. Biol. Chem. 274, 25130–25135 (1999).

    Article  CAS  Google Scholar 

  27. Ahmad, S. et al. Direct evidence for endothelial vascular endothelial growth factor receptor-1 function in nitric oxide-mediated angiogenesis. Circ. Res. 99, 715–722 (2006).

    Article  CAS  Google Scholar 

  28. Trzewik, J., Mallipattu, S.K., Artmann, G.M., Delano, F.A. & Schmid-Schonbein, G.W. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001).

    Article  CAS  Google Scholar 

  29. Boardman, K.C. & Swartz, M.A. Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003).

    Article  CAS  Google Scholar 

  30. Goldman, J. et al. Regulation of lymphatic capillary regeneration by interstitial flow in skin. Am. J. Physiol. Heart Circ. Physiol. 292, H2176–H2183 (2007).

    Article  CAS  Google Scholar 

  31. Rutkowski, J.M., Boardman, K.C. & Swartz, M.A. Characterization of lymphangiogenesis in a model of adult skin regeneration. Am. J. Physiol. Heart Circ. Physiol. 291, H1402–H1410 (2006).

    Article  CAS  Google Scholar 

  32. Konovchuk, V.N. Fiziol. Zh. SSSR Im. I M Sechenova [The participation of the central lymph in regulating water-salt metabolism and kidney function] 78, 42–47 (1992).

    CAS  PubMed  Google Scholar 

  33. Oberleithner, H. et al. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl. Acad. Sci. USA 104, 16281–16286 (2007).

    Article  CAS  Google Scholar 

  34. Van Rooijen, N. & Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994).

    Article  CAS  Google Scholar 

  35. He, Y. et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl. Cancer Inst. 94, 819–825 (2002).

    Article  CAS  Google Scholar 

  36. Karpanen, T. et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 61, 1786–1790 (2001).

    CAS  PubMed  Google Scholar 

  37. Laitinen, M. et al. Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. Hum. Gene Ther. 9, 1481–1486 (1998).

    Article  CAS  Google Scholar 

  38. Jantsch, J. et al. Small interfering RNA (siRNA) delivery into murine bone marrow-derived dendritic cells by electroporation. J. Immunol. Methods 337, 71–77 (2008).

    Article  CAS  Google Scholar 

  39. Miyakawa, H. et al. Cis- and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity. Am. J. Physiol. 274, F753–F761 (1998).

    CAS  PubMed  Google Scholar 

  40. Obst, M. et al. Nitric oxide synthase expression in AT2 receptor–deficient mice after DOCA-salt. Kidney Int. 65, 2268–2278 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Interdisziplinäres Zentrum für klinische Forschung Erlangen (TP B13), from the Bundesministerium für Bildung und Forschung - Forschung unter Weltraumbedingungen (50WB0620), and from the Deutsche Forschungsgemeinschaft (Ti345/2) to J.T., from the sixth Framework Integrated Project Lymphangiogenomics (LSGH-2004-503573) to D.K., and from a Fresenius Nephro-Core Stipend to A.Z. F.C.L. and D.N.M. were supported by EuReGene; D.N.M. is a Helmholtz fellow. We thank N. Rakova for translating Russian articles and E. Prell, M. Klewer and B. Hausknecht for their technical assistance. We thank P. Uhrin (Department of Vascular Biology and Thrombosis Research, Medical University of Vienna) for the Swiss-129Sv mice and H.M. Kwon (Department of Medicine, University of Maryland) for pCMV-Tag2-TonEBP.

Author information

Authors and Affiliations

Authors

Contributions

A.M. conducted the experiments and generated all experimental data, W.N. and F.-X.B. generated cells with stable TonEBP overexpression and contributed to the in vitro studies and writing of the manuscript, J.J. contributed to the in vitro studies, A.D., J.G. and A.Z. contributed to the animal studies, T.T. and K.A. provided adenoviruses and contributed to the adenoviral animal experiments, K.M. and A.K. did the three-dimensional resolution of the lymph capillary network, J.-K.P. analyzed and quantified eNOS expression, D.N.M. contributed to animal experiments and writing of the manuscript, W.D. provided human serum from subjects with refractory hypertension, P.D. and H.W. contributed to analysis of internal electrolyte redistribution in animal experiments by chemical analysis, N.v.R. generated clodronate liposomes for MPS depletion experiments, K.F.H. and K.-U.E. contributed to the conception of experimental design and the writing of the manuscript, F.C.L. provided serum samples from subjects and wrote the manuscript, D.K. contributed the methods and experimental design for quantification of lymph capillary network changes and the conception of macrophage–VEGF-C–lymph capillary interaction, J.T. planned and organized the experimental approach, supervised the project, analyzed the data statistically and wrote the manuscript.

Corresponding author

Correspondence to Jens Titze.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4, Supplementary Table 1 and Supplementary Methods (PDF 775 kb)

Supplementary Video 1

Lymphcapillaries in rat ear, low-salt salt diet (MOV 4860 kb)

Supplementary Video 2

Lymphcapillaries in rat ear, high-salt diet (MOV 4086 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machnik, A., Neuhofer, W., Jantsch, J. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism. Nat Med 15, 545–552 (2009). https://doi.org/10.1038/nm.1960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing