Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis

Abstract

Thyroid dysfunction is a global health concern, causing defects including neurodevelopmental disorders, dwarfism and cardiac arrhythmia. Here, we show that the potassium channel subunits KCNQ1 and KCNE2 form a thyroid-stimulating hormone–stimulated, constitutively active, thyrocyte K+ channel required for normal thyroid hormone biosynthesis. Targeted disruption of Kcne2 in mice impaired thyroid iodide accumulation up to eightfold, impaired maternal milk ejection, halved milk tetraiodothyronine (T4) content and halved litter size. Kcne2-deficient mice had hypothyroidism, dwarfism, alopecia, goiter and cardiac abnormalities including hypertrophy, fibrosis, and reduced fractional shortening. The alopecia, dwarfism and cardiac abnormalities were alleviated by triiodothyronine (T3) and T4 administration to pups, by supplementing dams with T4 before and after they gave birth or by feeding the pups exclusively from Kcne2+/+ dams; conversely, these symptoms were elicited in Kcne2+/+ pups by feeding exclusively from Kcne2−/− dams. These data provide a new potential therapeutic target for thyroid disorders and raise the possibility of an endocrine component to previously identified KCNE2- and KCNQ1-linked human cardiac arrhythmias.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kcne2 disruption causes cardiac hypertrophy, fibrosis and reduced fractional shortening.
Figure 2: Kcne2 disruption causes embryonic lethality, dwarfism and alopecia.
Figure 3: Kcne2−/− mice are hypothyroid and treatable with T3 and T4 or wild-type surrogacy.
Figure 4: KCNE2 and KCNQ1 form a TSH-stimulated thyrocyte K+ channel.
Figure 5: Kcne2 is required for normal thyroid I accumulation.
Figure 6: Kcne2−/− dams have a milk ejection defect and produce low-T4 milk.

Similar content being viewed by others

References

  1. Barhanin, J. et al. KVLQT1 and lsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384, 78–80 (1996).

    Article  CAS  Google Scholar 

  2. Sanguinetti, M.C. et al. Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384, 80–83 (1996).

    Article  CAS  Google Scholar 

  3. Splawski, I., Tristani-Firouzi, M., Lehmann, M.H., Sanguinetti, M.C. & Keating, M.T. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat. Genet. 17, 338–340 (1997).

    Article  CAS  Google Scholar 

  4. Tyson, J. et al. IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum. Mol. Genet. 6, 2179–2185 (1997).

    Article  CAS  Google Scholar 

  5. McDonald, T.V. et al. A minK-HERG complex regulates the cardiac potassium current IKr . Nature 388, 289–292 (1997).

    Article  CAS  Google Scholar 

  6. Abbott, G.W. et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97, 175–187 (1999).

    Article  CAS  Google Scholar 

  7. McCrossan, Z.A. & Abbott, G.W. The MinK-related peptides. Neuropharmacology 47, 787–821 (2004).

    Article  CAS  Google Scholar 

  8. Curran, M.E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803 (1995).

    Article  CAS  Google Scholar 

  9. Chen, Y.H. et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299, 251–254 (2003).

    Article  CAS  Google Scholar 

  10. Ehrlich, J.R., Zicha, S., Coutu, P., Hebert, T.E. & Nattel, S. Atrial fibrillation-associated minK38G/S polymorphism modulates delayed rectifier current and membrane localization. Cardiovasc. Res. 67, 520–528 (2005).

    Article  CAS  Google Scholar 

  11. Temple, J. et al. Atrial fibrillation in KCNE1-null mice. Circ. Res. 97, 62–69 (2005).

    Article  CAS  Google Scholar 

  12. Yang, Y. et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am. J. Hum. Genet. 75, 899–905 (2004).

    Article  CAS  Google Scholar 

  13. Schroeder, B.C. et al. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403, 196–199 (2000).

    Article  CAS  Google Scholar 

  14. Lee, M.P. et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J. Clin. Invest. 106, 1447–1455 (2000).

    Article  CAS  Google Scholar 

  15. Roepke, T.K. et al. The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion. J. Biol. Chem. 281, 23740–23747 (2006).

    Article  CAS  Google Scholar 

  16. Dai, G., Levy, O. & Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 379, 458–460 (1996).

    Article  CAS  Google Scholar 

  17. Dohán, O. et al. The sodium/iodide symporter (NIS): characterization, regulation and medical significance. Endocr. Rev. 24, 48–77 (2003).

    Article  Google Scholar 

  18. Sesti, F. et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl. Acad. Sci. USA 97, 10613–10618 (2000).

    Article  CAS  Google Scholar 

  19. Roepke, T.K. et al. Targeted deletion of Kcne2 impairs ventricular repolarization via disruption of IK,slow1 and Ito,f . FASEB J. 22, 3648–3660 (2008).

    Article  CAS  Google Scholar 

  20. Shiels, H.A. & White, E. The Frank-Starling mechanism in vertebrate cardiac myocytes. J. Exp. Med. 211, 2005–2013 (2008).

    Google Scholar 

  21. Fukuda, H., Ohshima, K., Mori, M., Kobayashi, I. & Greer, M.A. Sequential changes in the pituitary-thyroid axis during pregnancy and lactation in the rat. Endocrinology 107, 1711–1716 (1980).

    Article  CAS  Google Scholar 

  22. Imaizumi, M. et al. Pregnancy and murine thyroiditis: thyroglobulin immunization leads to fetal loss in specific allogeneic pregnancies. Endocrinology 142, 823–829 (2001).

    Article  CAS  Google Scholar 

  23. Burman, K.D. & McKinley-Grant, L. Dermatologic aspects of thyroid disease. Clin. Dermatol. 24, 247–255 (2006).

    Article  Google Scholar 

  24. Tang, Y.D. et al. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles and severe systolic dysfunction. Circulation 112, 3122–3130 (2005).

    Article  CAS  Google Scholar 

  25. Dedek, K. & Waldegger, S. Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract. Pflugers Arch. 442, 896–902 (2001).

    Article  CAS  Google Scholar 

  26. Grahammer, F. et al. The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology 120, 1363–1371 (2001).

    Article  CAS  Google Scholar 

  27. Hapon, M.B., Simoncini, M., Via, G. & Jahn, G.A. Effect of hypothyroidism on hormone profiles in virgin, pregnant and lactating rats and on lactation. Reproduction 126, 371–382 (2003).

    Article  CAS  Google Scholar 

  28. Oddie, T.H., Meade, J.H. Jr., Myhill, J. & Fisher, D.A. Dependence of renal clearance of radioiodide on sex, age and thyroidal status. J. Clin. Endocrinol. Metab. 26, 1293–1296 (1966).

    Article  CAS  Google Scholar 

  29. Yang, W.P. et al. KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. Proc. Natl. Acad. Sci. USA 94, 4017–4021 (1997).

    Article  CAS  Google Scholar 

  30. Casimiro, M.C. et al. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen syndrome. Proc. Natl. Acad. Sci. USA 98, 2526–2531 (2001).

    Article  CAS  Google Scholar 

  31. Elso, C.M. et al. Heightened susceptibility to chronic gastritis, hyperplasia and metaplasia in Kcnq1 mutant mice. Hum. Mol. Genet. 13, 2813–2821 (2004).

    Article  CAS  Google Scholar 

  32. van Wassenaer, A.G. et al. The quantity of thyroid hormone in human milk is too low to influence plasma thyroid hormone levels in the very preterm infant. Clin. Endocrinol. 56, 621–627 (2002).

    Article  CAS  Google Scholar 

  33. Grüters, A., Krude, H. & Biebermann, H. Molecular genetic defects in congenital hypothyroidism. Eur. J. Endocrinol. 151 Suppl 3, U39–U44 (2004).

    Article  Google Scholar 

  34. Tazebay, U.H. et al. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 6, 871–878 (2000).

    Article  CAS  Google Scholar 

  35. VanTol, B.L. et al. Contribution of KCNQ1 to the regulatory volume decrease in the human mammary epithelial cell line, MCF-7. Am. J. Physiol. Cell Physiol. 293, C1010–C1019 (2007).

    Article  CAS  Google Scholar 

  36. Gavin, L.A. Thyroid crises. Med. Clin. North Am. 75, 179–193 (1991).

    Article  CAS  Google Scholar 

  37. Kasatkina, E.P. et al. Gestational hypothyroxinemia and cognitive function in offspring. Neurosci. Behav. Physiol. 36, 619–624 (2006).

    Article  CAS  Google Scholar 

  38. Palagiano, A. Immunological abortion: the thyroid factor. Minerva Ginecol. 58, 471–477 (2006).

    CAS  PubMed  Google Scholar 

  39. Song, L., McGee, J.A. & Walsh, E.J. Consequences of combined maternal, fetal and persistent postnatal hypothyroidism on the development of auditory function in Tshrhyt mutant mice. Brain Res. 1101, 59–72 (2006).

    Article  CAS  Google Scholar 

  40. Opazo, M.C. et al. Maternal hypothyroxinemia impairs spatial learning and synaptic nature and function in the offspring. Endocrinology 149, 5097–5106 (2008).

    Article  CAS  Google Scholar 

  41. Pallas, D. et al. Increased mean serum thyrotropin in apparently euthyroid hypercholesterolemic patients: does it mean occult hypothyroidism? J. Endocrinol. Invest. 14, 743–746 (1991).

    Article  CAS  Google Scholar 

  42. Haggerty, J.J. Jr. et al. Subclinical hypothyroidism: a review of neuropsychiatric aspects. Int. J. Psychiatry Med. 20, 193–208 (1990).

    Article  Google Scholar 

  43. Glueck, C.J., Lang, J., Tracy, T. & Speirs, J. The common finding of covert hypothyroidism at initial clinical evaluation for hyperlipoproteinemia. Clin. Chim. Acta 201, 113–122 (1991).

    Article  CAS  Google Scholar 

  44. Kathiresan, S. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341 (2009).

    Article  CAS  Google Scholar 

  45. Hak, A.E. et al. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam study. Ann. Intern. Med. 132, 270–278 (2000).

    Article  CAS  Google Scholar 

  46. Bakiner, O. et al. Subclinical hypothyroidism is characterized by increased QT interval dispersion among women. Med. Princ. Pract. 17, 390–394 (2008).

    Article  CAS  Google Scholar 

  47. Sawin, C.T. et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N. Engl. J. Med. 331, 1249–1252 (1994).

    Article  CAS  Google Scholar 

  48. Lévy, S. Epidemiology and classification of atrial fibrillation. J. Cardiovasc. Electrophysiol. 9, S78–S82 (1998).

    PubMed  Google Scholar 

  49. Forfar, J.C., Miller, H.C. & Toft, A.D. Occult thyrotoxicosis: a correctable cause of 'idiopathic' atrial fibrillation. Am. J. Cardiol. 44, 9–12 (1979).

    Article  CAS  Google Scholar 

  50. Nakazawa, H.K., Sakurai, K., Hamada, N., Momotani, N. & Ito, K. Management of atrial fibrillation in the post-thyrotoxic state. Am. J. Med. 72, 903–906 (1982).

    Article  CAS  Google Scholar 

  51. Tester, D.J. & Ackerman, M.J. Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J. Am. Coll. Cardiol. 49, 240–246 (2007).

    Article  Google Scholar 

  52. Olson, T.M. et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. J. Am. Med. Assoc. 293, 447–454 (2005).

    Article  CAS  Google Scholar 

  53. Heitzmann, D. et al. Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. J. Physiol. (Lond.) 561, 547–557 (2004).

    Article  CAS  Google Scholar 

  54. Gnat, D. et al. Fast colorimetric method for measuring urinary iodine. Clin. Chem. 49, 186–188 (2003).

    Article  CAS  Google Scholar 

  55. Quevedo-Corona, L. et al. 3,5,3′-triiodothyronine administered to rat dams during lactation increases milk yield and triglyceride concentration and hastens pups growth. Life Sci. 66, 2013–2021 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.W.A. is supported by the US National Heart, Lung, and Blood Institute (HL079275) and the American Heart Association (0855756D). N.C. is supported by the US National Institute of Diabetes and Digestive and Kidney Diseases (DK41544) and the US National Cancer Institute (CA098390). M.P. is supported by US National Institutes of Health Medical Scientist Training Grant 5T32GM002788. We are grateful for expert technical assistance from S. Backovic, L. Cohen-Gould, G. J.-S. Abbott, K. La Perle, the Molecular Cytology Core Facility of Memorial Sloan-Kettering Cancer Center and C. Basson and J. Chen (WCMC Center for Molecular Cardiology Small Animal Physiology Core Facility). We also thank T. Denecke for interpreting the radiographs and B. Abbott for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to design of experiments, data analysis, figure preparation and manuscript writing. All authors except E.F. and D.J.L. performed experiments.

Corresponding author

Correspondence to Geoffrey W Abbott.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–3 (PDF 384 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roepke, T., King, E., Reyna-Neyra, A. et al. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med 15, 1186–1194 (2009). https://doi.org/10.1038/nm.2029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing