Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SUMOylation of Krüppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-δ

Abstract

Obesity and metabolic syndrome are increasingly recognized as major risk factors for cardiovascular disease. Herein we show that Krüppel-like transcription factor 5 (KLF5) is a crucial regulator of energy metabolism. Klf5+/− mice were resistant to high fat–induced obesity, hypercholesterolemia and glucose intolerance, despite consuming more food than wild-type mice. This may in part reflect their enhanced energy expenditure. Expression of the genes involved in lipid oxidation and energy uncoupling, including those encoding carnitine-palmitoyl transferase-1b (Cpt1b) and uncoupling proteins 2 and 3 (Ucp2 and Ucp3), was upregulated in the soleus muscles of Klf5+/− mice. Under basal conditions, KLF5 modified with small ubiquitin-related modifier (SUMO) proteins was associated with transcriptionally repressive regulatory complexes containing unliganded peroxisome proliferator–activated receptor-δ (PPAR-δ) and co-repressors and thus inhibited Cpt1b, Ucp2 and Ucp3 expression. Upon agonist stimulation of PPAR-δ, KLF5 was deSUMOylated, and became associated with transcriptional activation complexes containing both the liganded PPAR-δ and CREB binding protein (CBP). This activation complex increased the expression of Cpt1b, Ucp2 and Ucp3. Thus, SUMOylation seems to be a molecular switch affecting function of KLF5 and the transcriptional regulatory programs governing lipid metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Klf5+/− mice are protected from diet-induced obesity and metabolic dysfunction.
Figure 2: SUMO-modification of KLF5 is required for transrepression activity and recruitment of corepressors.
Figure 3: KLF5 interacts with PPAR-δ and binds the Cpt1b, Ucp3 and Ucp2 promoters with PPAR-δ and co-regulators.
Figure 4: Dynamic exchange of co-regulators and deSUMOylation induced by GW501516.
Figure 5: SUMOylation of KLF5 within transcriptional regulatory programs governing expression of genes related to fatty acid catabolism.
Figure 6: KLF5 has an essential role in the formation of transcriptional regulatory complexes that respond to GW501516 action on the target gene promoters.

Similar content being viewed by others

References

  1. Lowell, B.B. & Spiegelman, B.M. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000).

    Article  CAS  Google Scholar 

  2. Weigle, D.S. Appetite and the regulation of body composition. FASEB J. 8, 302–310 (1994).

    Article  CAS  Google Scholar 

  3. Smith, A.G. & Muscat, G.E. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int. J. Biochem. Cell Biol. 37, 2047–2063 (2005).

    Article  CAS  Google Scholar 

  4. Ukropcova, B. et al. Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. J. Clin. Invest. 115, 1934–1941 (2005).

    Article  CAS  Google Scholar 

  5. Kelley, D.E. Skeletal muscle fat oxidation: timing and flexibility are everything. J. Clin. Invest. 115, 1699–1702 (2005).

    Article  CAS  Google Scholar 

  6. Spiegelman, B.M. & Heinrich, R. Biological control through regulated transcriptional coactivators. Cell 119, 157–167 (2004).

    Article  CAS  Google Scholar 

  7. Lin, J., Handschin, C. & Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).

    Article  Google Scholar 

  8. Rawson, R.B. The SREBP pathway. Nat. Rev. Mol. Cell Biol. 4, 631–640 (2003).

    Article  CAS  Google Scholar 

  9. Evans, R.M., Barish, G.D. & Wang, Y.X. PPARs and the complex journey to obesity. Nat. Med. 10, 355–361 (2004).

    Article  CAS  Google Scholar 

  10. Mootha, V.K. et al. Errα and Gabpa/b specify PGC-1α–dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl. Acad. Sci. USA 101, 6570–6575 (2004).

    Article  CAS  Google Scholar 

  11. Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J.M. & Stoffel, M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432, 1027–1032 (2004).

    Article  CAS  Google Scholar 

  12. Schuler, M. et al. PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4, 407–414 (2006).

    Article  CAS  Google Scholar 

  13. Dressel, U. et al. The peroxisome proliferator–activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17, 2477–2493 (2003).

    Article  CAS  Google Scholar 

  14. Tanaka, T. et al. Activation of peroxisome proliferator–activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. USA 100, 15924–15929 (2003).

    Article  CAS  Google Scholar 

  15. Wang, Y.X. et al. Peroxisome proliferator–activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    Article  CAS  Google Scholar 

  16. Wang, Y.X. et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2, e294 (2004).

    Article  Google Scholar 

  17. Lee, C.H. et al. Peroxisome proliferator–activated receptor δ promotes very low-density lipoprotein–derived fatty acid catabolism in the macrophage. Proc. Natl. Acad. Sci. USA 103, 2434–2439 (2006).

    Article  CAS  Google Scholar 

  18. Krogsdam, A.M. et al. Nuclear receptor corepressor–dependent repression of peroxisome proliferator–activated receptor δ–mediated transactivation. Biochem. J. 363, 157–165 (2002).

    Article  CAS  Google Scholar 

  19. Shi, Y., Hon, M. & Evans, R.M. The peroxisome proliferator–activated receptor δ, an integrator of transcriptional repression and nuclear receptor signaling. Proc. Natl. Acad. Sci. USA 99, 2613–2618 (2002).

    Article  CAS  Google Scholar 

  20. Hay, R.T. SUMO: a history of modification. Mol. Cell 18, 1–12 (2005).

    Article  CAS  Google Scholar 

  21. Gill, G. Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15, 536–541 (2005).

    Article  CAS  Google Scholar 

  22. Pascual, G. et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 437, 759–763 (2005).

    Article  CAS  Google Scholar 

  23. Eaton, E.M. & Sealy, L. Modification of CCAAT/enhancer-binding protein-β by the small ubiquitin-like modifier (SUMO) family members, SUMO-2 and SUMO-3. J. Biol. Chem. 278, 33416–33421 (2003).

    Article  CAS  Google Scholar 

  24. Hirano, Y., Murata, S., Tanaka, K., Shimizu, M. & Sato, R. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. J. Biol. Chem. 278, 16809–16819 (2003).

    Article  CAS  Google Scholar 

  25. Haldar, S.M., Ibrahim, O.A. & Jain, M.K. Kruppel-like factors (KLFs) in muscle biology. J. Mol. Cell. Cardiol. 43, 1–10 (2007).

    Article  CAS  Google Scholar 

  26. Fujiu, K. et al. Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5. Circ. Res. 97, 1132–1141 (2005).

    Article  CAS  Google Scholar 

  27. Shindo, T. et al. Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat. Med. 8, 856–863 (2002).

    Article  CAS  Google Scholar 

  28. Oishi, Y. et al. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 1, 27–39 (2005).

    Article  CAS  Google Scholar 

  29. Shi, H., Zhang, Z., Wang, X., Liu, S. & Teng, C.T. Isolation and characterization of a gene encoding human Kruppel-like factor 5 (IKLF): binding to the CAAT/GT box of the mouse lactoferrin gene promoter. Nucleic Acids Res. 27, 4807–4815 (1999).

    Article  CAS  Google Scholar 

  30. Watanabe, N. et al. BTEB2, a Kruppel-like transcription factor, regulates expression of the SMemb/Nonmuscle myosin heavy chain B (SMemb/NMHC-B) gene. Circ. Res. 85, 182–191 (1999).

    Article  CAS  Google Scholar 

  31. Brandt, J.M., Djouadi, F. & Kelly, D.P. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator–activated receptor α. J. Biol. Chem. 273, 23786–23792 (1998).

    Article  CAS  Google Scholar 

  32. Medvedev, A.V., Snedden, S.K., Raimbault, S., Ricquier, D. & Collins, S. Transcriptional regulation of the mouse uncoupling protein-2 gene. Double E-box motif is required for peroxisome proliferator–activated receptor-γ–dependent activation. J. Biol. Chem. 276, 10817–10823 (2001).

    Article  CAS  Google Scholar 

  33. Pecqueur, C. et al. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress and evidence for translational regulation. J. Biol. Chem. 276, 8705–8712 (2001).

    Article  CAS  Google Scholar 

  34. van der Leij, F.R. et al. Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals. J. Biol. Chem. 277, 26994–27005 (2002).

    Article  CAS  Google Scholar 

  35. Dang, D.T., Zhao, W., Mahatan, C.S., Geiman, D.E. & Yang, V.W. Opposing effects of Kruppel-like factor 4 (gut-enriched Kruppel-like factor) and Kruppel-like factor 5 (intestinal-enriched Kruppel-like factor) on the promoter of the Kruppel-like factor 4 gene. Nucleic Acids Res. 30, 2736–2741 (2002).

    Article  CAS  Google Scholar 

  36. Gong, L. & Yeh, E.T. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J. Biol. Chem. 281, 15869–15877 (2006).

    Article  CAS  Google Scholar 

  37. Tatham, M.H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    Article  CAS  Google Scholar 

  38. Perdomo, J., Verger, A., Turner, J. & Crossley, M. Role for SUMO modification in facilitating transcriptional repression by BKLF. Mol. Cell. Biol. 25, 1549–1559 (2005).

    Article  CAS  Google Scholar 

  39. Chou, C.C. et al. Small ubiquitin-like modifier modification regulates the DNA binding activity of glial cell missing Drosophila homolog a. J. Biol. Chem. 282, 27239–27249 (2007).

    Article  CAS  Google Scholar 

  40. Kerner, J. & Hoppel, C. Fatty acid import into mitochondria. Biochim. Biophys. Acta 1486, 1–17 (2000).

    Article  CAS  Google Scholar 

  41. Sebastian, D., Herrero, L., Serra, D., Asins, G. & Hegardt, F.G. CPT I overexpression protects L6E9 muscle cells from fatty acid–induced insulin resistance. Am. J. Physiol. Endocrinol. Metab. 292, E677–E686 (2007).

    Article  CAS  Google Scholar 

  42. Dobbins, R.L. et al. Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes 50, 123–130 (2001).

    Article  CAS  Google Scholar 

  43. Vidal-Puig, A.J. et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J. Biol. Chem. 275, 16258–16266 (2000).

    Article  CAS  Google Scholar 

  44. Bezaire, V., Seifert, E.L. & Harper, M.E. Uncoupling protein-3: clues in an ongoing mitochondrial mystery. FASEB J. 21, 312–324 (2007).

    Article  CAS  Google Scholar 

  45. Brand, M.D. & Esteves, T.C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2, 85–93 (2005).

    Article  CAS  Google Scholar 

  46. Rosenfeld, M.G., Lunyak, V.V. & Glass, C.K. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428 (2006).

    Article  CAS  Google Scholar 

  47. Barish, G.D., Narkar, V.A. & Evans, R.M. PPARδ: a dagger in the heart of the metabolic syndrome. J. Clin. Invest. 116, 590–597 (2006).

    Article  CAS  Google Scholar 

  48. Lee, C.H. et al. PPARδ regulates glucose metabolism and insulin sensitivity. Proc. Natl. Acad. Sci. USA 103, 3444–3449 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge N. Yamanaka, M. Hayashi, Y. Tani and E. Magoshi for their excellent technical assistance. We thank M. Yamada (Gunma University) for providing pGL3-UCP2, C. Glass (University of California, San Diego) for providing FLAG-tagged cDNA encoding mouse NCoR, R. Evans (Salk Institute for Biological Studies) for providing cDNA encoding human SMRT and the Gal4-SMRT expression construct, R. Hay (University of Dundee) for providing pcDNA3-HA-SUMO1 and pcDNA3-HA-SUMO2, E. Yeh (University of Texas–Houston Health Science) for providing pcDNA3-SENP1, and P. Grimaldi (Universite de Nice-Sophia Antipolis) for providing pcDNA3-PPARδ. This study was supported in part by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to R.N., I.M. and Y.O.), a research grant from the National Institute of Biomedical Innovation, Japan and Special Coordination Funds for Promoting Science and Technology from Japan Science and Technology Agency (to R.N.), and research grants from Japan Science and Technology Agency, NOVARTIS Foundation for the Promotion of Science, Kato Memorial Bioscience Foundation, Takeda Science Foundation, Cell Science Research Foundation and Tokyo Biochemical Research Foundation (to I.M.).

Author information

Authors and Affiliations

Authors

Contributions

Y.O. developed the project, performed most of the experiments and data analysis and wrote the manuscript. I.M. developed and supervised the project, designed experiments, performed data analysis and wrote the manuscript. M.O., T. Kubota. and N.K. contributed to the mouse physiology studies. K.F. and K.M. contributed to the in vitro studies. K.T. and T. Kadowaki supervised the project and reviewed the manuscript. R.N. directed the project and reviewed the manuscript.

Corresponding authors

Correspondence to Ichiro Manabe or Ryozo Nagai.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–7 and Supplementary Methods (PDF 3311 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oishi, Y., Manabe, I., Tobe, K. et al. SUMOylation of Krüppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-δ. Nat Med 14, 656–666 (2008). https://doi.org/10.1038/nm1756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing