Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Ashwell receptor mitigates the lethal coagulopathy of sepsis

Abstract

The Ashwell receptor, the major lectin of hepatocytes, rapidly clears from blood circulation glycoproteins bearing glycan ligands that include galactose and N-acetylgalactosamine. This asialoglycoprotein receptor activity remains a key factor in the development and administration of glycoprotein pharmaceuticals, yet a biological purpose of the Ashwell receptor has remained elusive. We have identified endogenous ligands of the Ashwell receptor as glycoproteins and regulatory components in blood coagulation and thrombosis that include von Willebrand factor (vWF) and platelets. The Ashwell receptor normally modulates vWF homeostasis and is responsible for thrombocytopenia during systemic Streptococcus pneumoniae infection by eliminating platelets desialylated by the bacterium's neuraminidase. Hemostatic adaptation by the Ashwell receptor moderates the onset and severity of disseminated intravascular coagulation during sepsis and improves the probability of host survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ashwell receptors of hepatocytes modulate vWF homeostasis and blood coagulation.
Figure 2: The Ashwell receptor and the ST3Gal-IV sialyltransferase participate in platelet clearance.
Figure 3: Thrombocytopenia caused by NanA-dependent platelet desialylation and Ashwell receptor function in S. pneumoniae infection.
Figure 4: Extension of lifespan and reduction in coagulopathy by the Ashwell receptor in lethal S. pneumoniae infection.
Figure 5: Increased severity of coagulopathy in sepsis after infection with the S. pneumoniae NanA mutant.
Figure 6: The Ashwell receptor decreases mortality in S. pneumoniae sepsis.

Similar content being viewed by others

References

  1. van den Hamer, C.J.A., Morell, A.G., Scheinberg, I.H., Hickman, J. & Ashwell, G. Galactosyl residues in the clearance of ceruloplasmin from the circulation. J. Biol. Chem. 245, 4397–4402 (1970).

    CAS  PubMed  Google Scholar 

  2. Morell, A.G., Gregoriadis, G., Scheinberg, I.H., Hickman, J. & Ashwell, G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J. Biol. Chem. 246, 1461–1467 (1971).

    CAS  PubMed  Google Scholar 

  3. Ashwell, G. & Morell, A. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. 41, 99–128 (1974).

    CAS  PubMed  Google Scholar 

  4. Hudgin, R.L., Pricer, W.E. Jr, Ashwell, G., Stockert, R.J. & Morell, A.G. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J. Biol. Chem. 249, 5536–5543 (1974).

    CAS  PubMed  Google Scholar 

  5. Ashwell, G. & Kawasaki, T. A protein from mammalian liver that specifically binds galactose-terminated glycoproteins. Methods Enzymol. 50, 287–288 (1978).

    Article  CAS  Google Scholar 

  6. Ashwell, G. & Harford, J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51, 531–534 (1982).

    Article  CAS  Google Scholar 

  7. Stockert, R.J. The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol. Rev. 75, 591–609 (1995).

    Article  CAS  Google Scholar 

  8. Drickamer, K. C-type lectin–like domains. Curr. Opin. Struct. Biol. 9, 585–590 (1999).

    Article  CAS  Google Scholar 

  9. Park, E.I., Mi, Y., Unverzagt, C., Gabius, H.-J. & Baenziger, J.U. The asialoglycoprotein receptor clears glycoconjugates terminating with sialic acid α-2,6GalNAc. Proc. Natl. Acad. Sci. USA 102, 17125–17129 (2005).

    Article  CAS  Google Scholar 

  10. Weigel, P.H. Galactosyl and N-acetylgalactosaminyl homeostasis: a function for mammalian asialoglycoprotein receptors. Bioessays 16, 519–524 (1994).

    Article  CAS  Google Scholar 

  11. Wahrenbrock, M.G. & Varki, A. Multiple hepatic receptors cooperate to eliminate secretory mucins aberrantly entering the bloodstream: Are circulating cancer mucins the “tip of the iceberg”? Cancer Res. 66, 2433–2441 (2006).

    Article  CAS  Google Scholar 

  12. Drickamer, K., Mamon, J.F., Binns, G. & Leung, J.O. Primary structure of the rat liver asialoglycoprotein receptor. Structural evidence for multiple polypeptide species. J. Biol. Chem. 259, 770–778 (1984).

    CAS  PubMed  Google Scholar 

  13. Halberg, D.F. et al. Major and minor forms of the rat liver asialoglycoprotein receptor are independent galactose-binding proteins. Primary structure and glycosylation heterogeneity of minor receptor forms. J. Biol. Chem. 262, 9828–9838 (1987).

    CAS  PubMed  Google Scholar 

  14. Paietta, E., Stockert, R.J. & Racevskis, J. Alternatively spliced variants of the human hepatic asialoglycoprotein receptor, H2, differ in cellular trafficking and regulation of phosphorylation. J. Biol. Chem. 267, 11078–11084 (1992).

    CAS  PubMed  Google Scholar 

  15. Spiess, M. & Lodish, H.F. Sequence of a second human asialoglycoprotein receptor: conservation of two receptor genes during evolution. Proc. Natl. Acad. Sci. USA 82, 6465–6469 (1985).

    Article  CAS  Google Scholar 

  16. Hong, W., Le, A.V. & Doyle, D. Identification and characterization of a murine receptor for galactose-terminated glycoproteins. Hepatology 8, 553–558 (1988).

    Article  CAS  Google Scholar 

  17. Takezawa, R., Shinzawa, K., Watanabe, Y. & Akaike, T. Determination of mouse major asialoglycoprotein receptor cDNA sequence. Biochim. Biophys. Acta 1172, 220–222 (1993).

    Article  CAS  Google Scholar 

  18. Hardy, M.R., Townsend, R.R., Parkhurst, S.M. & Lee, Y.C. Different modes of ligand binding to the hepatic galactose/N-acetylgalactosamine lectin on the surface of rabbit hepatocytes. Biochemistry 24, 22–28 (1985).

    Article  CAS  Google Scholar 

  19. Braiterman, L.T. et al. The major subunit of the rat asialoglycoprotein receptor can function alone as a receptor. J. Biol. Chem. 264, 1682–1688 (1989).

    CAS  PubMed  Google Scholar 

  20. Henis, Y.I., Katzir, Z., Shia, M.A. & Lodish, H.F. Oligomeric structure of the human asialoglycoprotein receptor: nature and stoichiometry of mutual complexes containing H1 and H2 polypeptides assessed by fluorescence photobleaching recovery. J. Cell Biol. 111, 1409–1418 (1990).

    Article  CAS  Google Scholar 

  21. Bider, M.D., Wahlberg, J.M., Kammerer, R.A. & Spiess, M. The oligomerization domain of the asialoglycoprotein receptor preferentially forms 2:2 heterotetramers in vitro. J. Biol. Chem. 271, 31996–32001 (1996).

    Article  CAS  Google Scholar 

  22. Ruiz, N.I. & Drickamer, K. Differential ligand binding by two subunits of the rat liver asialoglycoprotein receptor. Glycobiology 6, 551–559 (1996).

    Article  CAS  Google Scholar 

  23. Saxena, A., Yik, J.H.N. & Weigel, P.H. H2, the minor subunit of the human asialoglycoprotein receptor, trafficks intracellularly and forms homo-oligomers, but does not bind asialo-orosomucoid. J. Biol. Chem. 277, 35297–35304 (2002).

    Article  CAS  Google Scholar 

  24. Weigel, P.H. & Yik, J.H.N. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim. Biophys. Acta 1572, 341–363 (2002).

    Article  CAS  Google Scholar 

  25. Ishibashi, S., Hammer, R.E. & Herz, J. Asialoglycoprotein receptor deficiency in mice lacking the minor receptor subunit. J. Biol. Chem. 269, 27803–27806 (1994).

    CAS  PubMed  Google Scholar 

  26. Braun, J.R., Willnow, T.E., Ishibashi, S., Ashwell, G. & Herz, J. The major subunit of the asialoglycoprotein receptor is expressed on the hepatocellular surface in mice lacking the minor receptor. J. Biol. Chem. 271, 21160–21166 (1996).

    Article  CAS  Google Scholar 

  27. Tozawa, R. et al. Asialoglycoprotein receptor deficiency in mice lacking the major receptor subunit. Its obligate requirement for the stable expression of oligomeric receptor. J. Biol. Chem. 276, 12624–12628 (2001).

    Article  CAS  Google Scholar 

  28. Ellies, L.G. et al. Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc. Natl. Acad. Sci. USA 99, 10042–10047 (2002).

    Article  CAS  Google Scholar 

  29. Soukharev, S., Miller, J.L. & Sauer, B. Segmental genomic replacement in embryonic stem cells by double lox targeting. Nucleic Acids Res. 27, e21 (1999).

    Article  CAS  Google Scholar 

  30. Stratton, J.R., Ballem, P.J., Gernsheimer, T., Cerqueira, M. & Slichter, S.J. Platelet destruction in autoimmune thrombocytopenic purpura: kinetcs and clearance of indium-111–labeled autologous platelets. J. Nucl. Med. 30, 629–637 (1989).

    CAS  PubMed  Google Scholar 

  31. Hoffmeister, K.M. et al. The clearance mechanism of chilled platelets. Cell 112, 87–97 (2003).

    Article  CAS  Google Scholar 

  32. Nakamura, M., Shibazaki, M., Nitta, Y. & Endo, Y. Translocation of platelets into Disse spaces and their entry into hepatocytes in response to lipopolysaccharides, interleukin-1 and tumour necrosis factor: the role of Kupffer cells. J. Hepatol. 28, 991–999 (1998).

    Article  CAS  Google Scholar 

  33. Rumjantseva, V., Josefsson, E.C., Wandall, H., Hartwig, J.H. & Stossel, T.P. Hepatocytes ingest long term refrigerated platelets: A novel platelet clearance mechanism. Blood (ASH Annual Meeting Abstracts) 108, 1523 (2006).

    Google Scholar 

  34. Camara, M., Boulnois, G.J., Andrew, P.W. & Mitchell, T.J. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect. Immun. 62, 3688–3695 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bryant, A.E. Biology and pathogenesis of thrombosis and procoagulant activity in invasive infections caused by Group A streptococci and Clostridium perfringens. Clin. Microbiol. Rev. 16, 451–462 (2003).

    Article  CAS  Google Scholar 

  36. Franchini, M., Lippi, G. & Manzato, F. Recent acquisitions in the pathophysiology, diagnosis and treatment of disseminated intravascular coagulation. Thromb. J. 4, 4 (2006).

    Article  Google Scholar 

  37. Winter, A.J. et al. A role for pneumolysin but not neuraminidase in the hearing loss and cochlear damage induced by experimental pneumococcal meningitis in guinea pigs. Infect. Immun. 65, 4411–4418 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Manco, S. et al. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect. Immun. 74, 4014–4020 (2006).

    Article  CAS  Google Scholar 

  39. World Health Organization. Wkly. Epidemiol. Rec. 78, 97–120 (2003).

  40. Remick, D.G. Pathophysiology of sepsis. Am. J. Pathol. 170, 1435–1444 (2007).

    Article  CAS  Google Scholar 

  41. Roggentin, P., Schauer, R., Hoyer, L.L. & Vimr, E.R. The sialidase superfamily and its spread by horizontal gene transfer. Mol. Microbiol. 9, 915–921 (1993).

    Article  CAS  Google Scholar 

  42. Paton, J.C., Andrew, P.W., Boulnois, G.J. & Mitchell, T.J. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu. Rev. Microbiol. 47, 89–115 (1993).

    Article  CAS  Google Scholar 

  43. Suzuki, Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol. Pharm. Bull. 28, 399–408 (2005).

    Article  CAS  Google Scholar 

  44. Soong, G. et al. Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J. Clin. Invest. 116, 2297–2305 (2006).

    Article  CAS  Google Scholar 

  45. Tong, H.-H., Liu, X., Chen, Y., James, M. & Demaria, T. Effect of neuraminidase on receptor-mediated adherence of Streptococcus pneumoniae to chinchilla tracheal epithelium. Acta Otolaryngol. (Stockh.) 122, 413–419 (2002).

    Article  CAS  Google Scholar 

  46. Shakhnovich, E.A., King, S.J. & Weiser, J.N. Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae: a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect. Immun. 70, 7161–7164 (2002).

    Article  CAS  Google Scholar 

  47. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    Article  CAS  Google Scholar 

  48. Mandic, R., Opper, C., Krappe, J. & Wesemann, W. Platelet sialic acid as a potential pathogenic factor in coronary heart disease. Thromb. Res. 106, 137–141 (2002).

    Article  CAS  Google Scholar 

  49. Zalik, S.E. On the possible role of endogenous lectins in early animal development. Anat. Embryol. (Berl.) 183, 521–536 (1991).

    Article  CAS  Google Scholar 

  50. Park, E.I. & Baenziger, J.U. Closely related mammals have distinct asialoglycoprotein receptor carbohydrate specificities. J. Biol. Chem. 279, 40954–40959 (2004).

    Article  CAS  Google Scholar 

  51. Rice, K.G., Thomas, V.H. & Yang, Y. Probing the binding specificity of C-type lectins in vivo. Methods Enzymol. 363, 90–104 (2003).

    Article  CAS  Google Scholar 

  52. Tribulatti, M.V., Mucci, J., Van Rooijen, N., Leguizamon, M.S. & Campetella, O. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas' disease by reducing the platelet sialic acid contents. Infect. Immun. 73, 201–207 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Brown and Q. Chen for technical assistance with some of the experiments. Assistance with fluorescent microscopy was obtained from the University of California, San Diego Cancer Center Digital Imaging Shared Resource team directed by J. Feramisco. Mice with the germline mutation of the Asgr-1 hepatocyte asialoglycoprotein receptor were kindly provided by B. Sauer (Stowers Institute for Medical Research, Kansas City, Missouri). Wild-type S. pneumoniae serotype 2 strain D39 and its isogenic NanA mutant were kindly provided by T. Mitchell (University of Glasgow). This research was funded by US National Institutes of Health grants HL-57345 to J.D.M., D.T.L. and N.V. and AI-051796 to V.N. and an American Heart Association Established Investigator Award to V.N. The Howard Hughes Medical Institute provides support to J.D.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamey D Marth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grewal, P., Uchiyama, S., Ditto, D. et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 14, 648–655 (2008). https://doi.org/10.1038/nm1760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing