Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function

Abstract

Treacher Collins syndrome (TCS) is a congenital disorder of craniofacial development arising from mutations in TCOF1, which encodes the nucleolar phosphoprotein Treacle. Haploinsufficiency of Tcof1 perturbs mature ribosome biogenesis, resulting in stabilization of p53 and the cyclin G1–mediated cell-cycle arrest that underpins the specificity of neuroepithelial apoptosis and neural crest cell hypoplasia characteristic of TCS. Here we show that inhibition of p53 prevents cyclin G1–driven apoptotic elimination of neural crest cells while rescuing the craniofacial abnormalities associated with mutations in Tcof1 and extending life span. These improvements, however, occur independently of the effects on ribosome biogenesis; thus suggesting that it is p53-dependent neuroepithelial apoptosis that is the primary mechanism underlying the pathogenesis of TCS. Our work further implies that neuroepithelial and neural crest cells are particularly sensitive to cellular stress during embryogenesis and that suppression of p53 function provides an attractive avenue for possible clinical prevention of TCS craniofacial birth defects and possibly those of other neurocristopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunoblot analysis of p53.
Figure 2: Immunostaining of p53.
Figure 3: Expression of Ccng1 and inhibition of apoptosis.
Figure 4: Analyses of apoptosis and ribosome biogenesis.
Figure 5: Embryonic skeletal analyses and prevention of TCS.
Figure 6: Genetic prevention of postnatal TCS craniofacial anomalies.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Phelps, P.D., Poswillo, D. & Lloyd, G.A. The ear deformities in mandibulofacial dysostosis (Treacher Collins syndrome). Clin. Otolaryngol. 6, 15–28 (1981).

    Article  CAS  Google Scholar 

  2. Rovin, S., Dachi, S.F., Borenstein, D.B. & Cotter, W.B. Mandibulofacial dysostosis, a familial study of five generations. J. Pediatr. 65, 215–221 (1964).

    Article  CAS  Google Scholar 

  3. Fazen, L.E., Elmore, J. & Nadler, H.L. Mandibulo-facial dysostosis. (Treacher-Collins syndrome). Am. J. Dis. Child. 113, 405–410 (1967).

    Article  CAS  Google Scholar 

  4. Edwards, S.J., Gladwin, A.J. & Dixon, M.J. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon. Am. J. Hum. Genet. 60, 515–524 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gladwin, A.J. et al. Treacher Collins syndrome may result from insertions, deletions or splicing mutations, which introduce a termination codon into the gene. Hum. Mol. Genet. 5, 1533–1538 (1996).

    Article  CAS  Google Scholar 

  6. The Treacher Collins Syndrome Collaborative Group. Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nat. Genet. 12, 130–136 (1996).

  7. Wise, C.A. et al. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region. Proc. Natl. Acad. Sci. USA 94, 3110–3115 (1997).

    Article  CAS  Google Scholar 

  8. Meier, U.T. & Blobel, G. Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 70, 127–138 (1992).

    Article  CAS  Google Scholar 

  9. Valdez, B.C., Henning, D., So, R.B., Dixon, J. & Dixon, M.J. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc. Natl. Acad. Sci. USA 101, 10709–10714 (2004).

    Article  CAS  Google Scholar 

  10. Hayano, T. et al. Proteomic analysis of human Nop56p-associated pre-ribosomal ribonucleoprotein complexes. Possible link between Nop56p and the nucleolar protein treacle responsible for Treacher Collins syndrome. J. Biol. Chem. 278, 34309–34319 (2003).

    Article  CAS  Google Scholar 

  11. Dixon, J. et al. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc. Natl. Acad. Sci. USA 103, 13403–13408 (2006).

    Article  CAS  Google Scholar 

  12. Zhao, L. et al. Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways. Mol. Cancer Res. 1, 195–206 (2003).

    CAS  PubMed  Google Scholar 

  13. Tomasini, R. et al. TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J. Biol. Chem. 278, 37722–37729 (2003).

    Article  CAS  Google Scholar 

  14. Aleo, E., Henderson, C.J., Fontanini, A., Solazzo, B. & Brancolini, C. Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. Cancer Res. 66, 9235–9244 (2006).

    Article  CAS  Google Scholar 

  15. Reczek, E.E., Flores, E.R., Tsay, A.S., Attardi, L.D. & Jacks, T. Multiple response elements and differential p53 binding control Perp expression during apoptosis. Mol. Cancer Res. 1, 1048–1057 (2003).

    CAS  PubMed  Google Scholar 

  16. Mendez-Vidal, C., Wilhelm, M.T., Hellborg, F., Qian, W. & Wiman, K.G. The p53-induced mouse zinc finger protein wig-1 binds double-stranded RNA with high affinity. Nucleic Acids Res. 30, 1991–1996 (2002).

    Article  CAS  Google Scholar 

  17. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  18. Zaika, A., Marchenko, N. & Moll, U.M. Cytoplasmically 'sequestered' wild type p53 protein is resistant to Mdm2-mediated degradation. J. Biol. Chem. 274, 27474–27480 (1999).

    Article  CAS  Google Scholar 

  19. Burstyn-Cohen, T. & Kalcheim, C. Association between the cell cycle and neural crest delamination through specific regulation of G1/S transition. Dev. Cell 3, 383–395 (2002).

    Article  CAS  Google Scholar 

  20. Komarov, P.G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999).

    Article  CAS  Google Scholar 

  21. Zhai, W. & Comai, L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol. Cell. Biol. 20, 5930–5938 (2000).

    Article  CAS  Google Scholar 

  22. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  23. Ihrie, R.A. et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell 120, 843–856 (2005).

    Article  CAS  Google Scholar 

  24. Jensen, M.R. et al. Reduced hepatic tumor incidence in cyclin G1–deficient mice. Hepatology 37, 862–870 (2003).

    Article  CAS  Google Scholar 

  25. Kimura, S.H. & Nojima, H. Cyclin G1 associates with MDM2 and regulates accumulation and degradation of p53 protein. Genes Cells 7, 869–880 (2002).

    Article  CAS  Google Scholar 

  26. Dixon, J., Brakebusch, C., Fassler, R. & Dixon, M.J. Increased levels of apoptosis in the prefusion neural folds underlie the craniofacial disorder, Treacher Collins syndrome. Hum. Mol. Genet. 9, 1473–1480 (2000).

    Article  CAS  Google Scholar 

  27. Nonn, L., Williams, R.R., Erickson, R.P. & Powis, G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell. Biol. 23, 916–922 (2003).

    Article  CAS  Google Scholar 

  28. Pani, L., Horal, M. & Loeken, M.R. Rescue of neural tube defects in Pax-3–deficient embryos by p53 loss of function: implications for Pax-3–dependent development and tumorigenesis. Genes Dev. 16, 676–680 (2002).

    Article  CAS  Google Scholar 

  29. Ruggero, D. & Pandolfi, P.P. Does the ribosome translate cancer? Nat. Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  30. Garcia-Cao, I. et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002).

    Article  CAS  Google Scholar 

  31. Kaufman, M.H . The Atlas of Mouse Development, 507 (Academic Press, London, 1992).

    Google Scholar 

  32. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R.R. Manipulating the Mouse Embryo, Ch.16 (Cold Spring Harbor Laboratory, Cold Spring Harbor, 2003).

    Google Scholar 

  33. Wilson, C.L. & Miller, C.J. Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 21, 3683–3685 (2005).

    Article  CAS  Google Scholar 

  34. R Development Core Team. A language and environment for statistical computing. The R Project for Statistical Computing. <http://www.R-project.org> (2006).

  35. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  36. Krull, C.E. A primer on using in ovo electroporation to analyze gene function. Dev. Dyn. 229, 433–439 (2004).

    Article  CAS  Google Scholar 

  37. Horne, M.C. et al. Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J. Biol. Chem. 271, 6050–6061 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Trainor and Dixon groups for comments on the manuscript; R. McCay and M. Morgan for maintenance of mutant mouse lines and administration of pifithrin-α; T. Yao and J. Ren for technical assistance with protein analysis and p53 antibody activity; D. Stark for confocal imaging expertise; S. Das for the Ccng1 riboprobe, D. Quelle and M. Horne for Ccng1 expression vectors; and E. Rubel for the Y10b antibody. Research in the Trainor laboratory is supported by the Stowers Institute for Medical Research, March of Dimes (6FY05-82), National Institute of Dental and Craniofacial Research (RO1 DE 016082-01) and the Hudson Foundation. Research in the Dixon laboratory is supported by the National Institutes of Health (P50 DE 016215) and the Medical Research Council, UK (G81/535).

Author information

Authors and Affiliations

Authors

Contributions

N.C.J., J.D., M.J.D. and P.A.T. conceived and designed the project and wrote the manuscript. N.C.J., M.L.L. and L.E. performed embryonic skeletal and adult analyses; N.C.J., K.G. and E.F.G. performed microarray and quantitative PCR analyses; N.C.J., M.L.L. and P.A.T. performed in situ hybridization and TUNEL staining; N.C.J., D.S., K.A. and J.-P.R. performed immunohistochemistry; D.S. performed electroporation and C.D., J.D. and M.J.D. provided knockout mice and other reagents.

Corresponding author

Correspondence to Paul A Trainor.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figs. 1–7 (PDF 581 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, N., Lynn, M., Gaudenz, K. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 14, 125–133 (2008). https://doi.org/10.1038/nm1725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing