Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-15 constrains mast cell–dependent antibacterial defenses by suppressing chymase activities

Abstract

Sepsis remains a global clinical problem. By using the mouse cecal ligation and puncture model of sepsis, here we identify an important aspect of mast cell (MC)-dependent, innate immune defenses against Gram-negative bacteria by demonstrating that MC protease activity is regulated by interleukin-15 (IL-15). Mouse MCs express both constitutive and lipopolysaccharide-inducible IL-15 and store it intracellularly. Deletion of Il15 in mice markedly increases chymase activities, leading to greater MC bactericidal responses, increased processing and activation of neutrophil-recruiting chemokines, and significantly higher survival rates of mice after septic peritonitis. By showing that intracellular IL-15 acts as a specific negative transcriptional regulator of a mouse MC chymase (mast cell protease-2), we provide evidence that defined MC protease activity is transcriptionally regulated by an intracellularly retained cytokine. Our results identify an unexpected breach in MC-dependent innate immune defenses against sepsis and suggest that inhibiting intracellular IL-15 in MCs may improve survival from sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-15 downregulates survival after CLP.
Figure 2: Mouse MCs express IL-15.
Figure 3: MC protease activity is regulated by intracellular IL-15.
Figure 4: IL-15 modulates MC chymase activity.
Figure 5: Role of IL-15 in the regulation of chymase-mediated antimicrobial activity.

Similar content being viewed by others

References

  1. Riedemann, N.C., Guo, R.F. & Ward, P.A. Novel strategies for the treatment of sepsis. Nat. Med. 9, 517–524 (2003).

    Article  CAS  Google Scholar 

  2. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885–891 (2002).

    Article  CAS  Google Scholar 

  3. Galli, S.J. et al. Mast cells as 'tunable' effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).

    Article  CAS  Google Scholar 

  4. Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol. 4, 787–799 (2004).

    Article  CAS  Google Scholar 

  5. Echtenacher, B., Männel, D.N. & Hültner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381, 75–77 (1996).

    Article  CAS  Google Scholar 

  6. Malaviya, R., Ikeda, T., Ross, E. & Abraham, N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNFα. Nature 381, 77–80 (1996).

    Article  CAS  Google Scholar 

  7. Maurer, M. et al. The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. J. Exp. Med. 188, 2343–2348 (1998).

    Article  CAS  Google Scholar 

  8. Bone-Larson, C.L. et al. Novel protective effects of stem cell factor in a murine model of acute septic peritonitis. Dependence on MCP-1. Am. J. Pathol. 157, 1177–1186 (2000).

    Article  CAS  Google Scholar 

  9. Feger, F., Varadaradjalou, S., Gao, Z., Abraham, S.N. & Arock, M. The role of mast cells in host defense and their subversion by bacterial pathogens. Trends Immunol. 23, 151–158 (2002).

    Article  CAS  Google Scholar 

  10. Huang, C., Sali, A. & Stevens, R.L. Regulation and function of mast cell proteases in inflammation. J. Clin. Immunol. 18, 169–183 (1998).

    Article  CAS  Google Scholar 

  11. Gurish, M.F. et al. Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand. J. Exp. Med. 175, 1003–1012 (1992).

    Article  CAS  Google Scholar 

  12. Miller, H.R., Wright, S.H., Knight, P.A. & Thornton, E.M. A novel function for transforming growth factor-β1: upregulation of the expression and the IgE-independent extracellular release of a mucosal mast cell granule-specific β-chymase, mouse mast cell protease-1. Blood 93, 3473–3486 (1999).

    CAS  PubMed  Google Scholar 

  13. Ghildyal, N., McNeil, H.P., Gurish, M.F., Austen, K.F. & Stevens, R.L. Transcriptional regulation of the mucosal mast cell-specific protease gene, MMCP-2, by interleukin 10 and interleukin 3. J. Biol. Chem. 267, 8473–8477 (1992).

    CAS  PubMed  Google Scholar 

  14. Mizutani, H., Schechter, N., Lazarus, G., Black, R.A. & Kupper, T.S. Rapid and specific conversion of precursor interleukin 1β (IL-1β) to an active IL-1 species by human mast cell chymase. J. Exp. Med. 174, 821–825 (1991).

    Article  CAS  Google Scholar 

  15. Zhao, W., Oskeritzian, C.A., Pozez, A.L. & Schwartz, L.B. Cytokine production by skin-derived mast cells: endogenous proteases are responsible for degradation of cytokines. J. Immunol. 175, 2635–2642 (2005).

    Article  CAS  Google Scholar 

  16. Bulfone-Paus, S., Bulanova, E., Budagian, V. & Paus, R. The interleukin-15/interleukin-15 receptor system as a model for juxtacrine and reverse signaling. BioEssays 28, 362–377 (2006).

    Article  CAS  Google Scholar 

  17. Fehniger, T.A. & Caligiuri, M.A. Interleukin-15: biology and relevance to human disease. Blood 97, 14–32 (2001).

    Article  CAS  Google Scholar 

  18. Budagian, V., Bulanova, E., Paus, R. & Bulfone-Paus, S. IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 17, 259–280 (2006).

    Article  CAS  Google Scholar 

  19. Hiromatsu, T. et al. Overexpression of interleukin-15 protects against Escherichia coli–induced shock accompanied by inhibition of tumor necrosis factor-α–induced apoptosis. J. Infect. Dis. 187, 1442–1451 (2003).

    Article  CAS  Google Scholar 

  20. Colucci, F., Caligiuri, M.A. & Di Santo, J.P. What does it take to make a natural killer? Nat. Rev. Immunol. 3, 413–425 (2003).

    Article  CAS  Google Scholar 

  21. Bulfone-Paus, S. et al. Interleukin-15 protects from lethal apoptosis in vivo. Nat. Med. 3, 1124–1128 (1997).

    Article  CAS  Google Scholar 

  22. Bulanova, E. et al. Mast cells express novel functional IL-15 receptor α isoforms. J. Immunol. 170, 5045–5055 (2003).

    Article  CAS  Google Scholar 

  23. Buras, J.A., Holzmann, B. & Sitkovsky, M. Animal models of sepsis: setting the stage. Nat. Rev. Drug Discov. 4, 854–865 (2005).

    Article  CAS  Google Scholar 

  24. Malaviya, R. & Abraham, S.N. Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J. Leukoc. Biol. 67, 841–846 (2000).

    Article  CAS  Google Scholar 

  25. Dvorak, A.M. Subcellular localization of the cytokines, basic fibroblast growth factor and tumor necrosis factor-α in mast cells. Chem. Immunol. Allergy 85, 72–88 (2005).

    Article  Google Scholar 

  26. Knight, P.A., Wright, S.H., Thornton, E.M., Brown, J. & Miller, H.R.P. Expression, function and regulation of mast cell granule chymases during mucosal allergic responses. In: Mast Cells and Basophils (eds. Marone G., Lichtenstein L.M. & Galli S.J.) 257–273 (Academic, San Diego, 2000).

    Chapter  Google Scholar 

  27. Schiemann, F. et al. Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counter-regulation by PF-4 through inhibition of chymase and cathepsin G. Blood 107, 2234–2242 (2006).

    Article  CAS  Google Scholar 

  28. Maurer, M. et al. Mast cells promote homeostasis by limiting endothelin-1–induced toxicity. Nature 432, 512–516 (2004).

    Article  CAS  Google Scholar 

  29. Calandra, T. et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat. Med. 6, 164–170 (2000).

    Article  CAS  Google Scholar 

  30. Moreno, S.E. et al. IL-12, but not IL-18, is critical to neutrophil activation and resistance to polymicrobial sepsis induced by cecal ligation and puncture. J. Immunol. 177, 3218–3224 (2006).

    Article  CAS  Google Scholar 

  31. Wirtz, S. et al. Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J. Exp. Med. 203, 1875–1881 (2006).

    Article  CAS  Google Scholar 

  32. Kandere-Grzybowska, K. et al. IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J. Immunol. 171, 4830–4836 (2003).

    Article  CAS  Google Scholar 

  33. Cao, J. et al. Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J. Immunol. 174, 7665–7675 (2005).

    Article  CAS  Google Scholar 

  34. Strik, M.C. et al. Intracellular serpin SERPINB6 (PI6) is abundantly expressed by human mast cells and forms complexes with β-tryptase monomers. Blood 103, 2710–2717 (2004).

    Article  CAS  Google Scholar 

  35. Feyerabend, T.B. et al. Loss of histochemical identity in mast cells lacking carboxypeptidase A. Mol. Cell. Biol. 25, 6199–6210 (2005).

    Article  CAS  Google Scholar 

  36. Ilangumaran, S., Finan, D., Raine, J. & Rottapel, R. Suppressor of cytokine signaling 1 regulates an endogenous inhibitor of a mast cell protease. J. Biol. Chem. 278, 41871–41880 (2003).

    Article  CAS  Google Scholar 

  37. Wilusz, C.J., Wormington, M. & Peltz, S.W. The cap-to-tail guide to mRNA turnover. Nat. Rev. Mol. Cell Biol. 2, 237–246 (2001).

    Article  CAS  Google Scholar 

  38. Xia, Z., Ghildyal, N., Austen, K.F. & Stevens, R.L. Post-transcriptional regulation of chymase expression in mast cells. J. Biol. Chem. 271, 8747–8753 (1996).

    Article  CAS  Google Scholar 

  39. de Garavilla, L. et al. A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase: molecular mechanisms and anti-inflammatory activity in vivo. J. Biol. Chem. 280, 18001–18007 (2005).

    Article  CAS  Google Scholar 

  40. Lindstedt, K.A. et al. Activation of paracrine TGF-β1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase. FASEB J. 15, 1377–1388 (2001).

    Article  CAS  Google Scholar 

  41. Nabah, Y.N. et al. Angiotensin II induces neutrophil accumulation in vivo through generation and release of CXC chemokines. Circulation 110, 3581–3586 (2004).

    Article  CAS  Google Scholar 

  42. Kunori, Y. et al. Rodent α-chymases are elastase-like proteases. Eur. J. Biochem. 269, 5921–5930 (2002).

    Article  CAS  Google Scholar 

  43. Solivan, S., Selwood, T., Wang, Z.M. & Schechter, N.M. Evidence for diversity of substrate specificity among members of the chymase family of serine proteases. FEBS Lett. 512, 133–138 (2002).

    Article  CAS  Google Scholar 

  44. Di Nardo, A., Vitiello, A. & Gallo, R.L. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol. 170, 2274–2278 (2003).

    Article  CAS  Google Scholar 

  45. Yang, D. et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074 (2000).

    Article  CAS  Google Scholar 

  46. Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  Google Scholar 

  47. Kennedy, M.K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15–deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  Google Scholar 

  48. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNF α-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  Google Scholar 

  49. Orinska, Z. et al. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 106, 978–987 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Streeck, D. Benner, S. Dinges and A. Bolch for technical support; C. Hölscher for IL-27 measurement; J. Urcioli for proofreading the manuscript; and J. Fingerle for advice. E. coli strain 2131 was a gift from O. Sperling and T.K. Lindhorst, Institute for Organic Chemistry, University of Kiel. This work was funded, in part, by grants from the Deutsche Forschungsgemeinschaft (DFG) to S.B.P. (SFB/TR22, A14), E.B. (SFB/TR22, A11), and M. Maurer (MA 1909/4-1/2). This work benefited from the European Union Network of Excellence Global Allergy and Asthma European Network (GA2LEN).

Author information

Authors and Affiliations

Authors

Contributions

Z.O. conducted the in vitro studies. M. Maurer and M. Metz conducted the in vivo experiments. F.M. conducted MCP-related experiments (expression, promoter regulation). N.N. and J.S. conducted the microbicidal assays. F.S. and E. Brandt performed and evaluated CTAP-III processing experiments. V.B. contributed to RT-PCR analysis. J. G.-M. and E. Bulanova conducted confocal staining experiments. Z.O., M. Maurer, R.P. and S.B.-P. wrote the manuscript. Z.O. and S.B.-P. supervised the project.

Corresponding author

Correspondence to Silvia Bulfone-Paus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1, Supplementary Methods (PDF 2402 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orinska, Z., Maurer, M., Mirghomizadeh, F. et al. IL-15 constrains mast cell–dependent antibacterial defenses by suppressing chymase activities. Nat Med 13, 927–934 (2007). https://doi.org/10.1038/nm1615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing