Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fen1 mutations result in autoimmunity, chronic inflammation and cancers

Abstract

Functional deficiency of the FEN1 gene has been suggested to cause genomic instability and cancer predisposition. We have identified a group of FEN1 mutations in human cancer specimens. Most of these mutations abrogated two of three nuclease activities of flap endonuclease 1 (FEN1). To demonstrate the etiological significance of these somatic mutations, we inbred a mouse line harboring the E160D mutation representing mutations identified in human cancers. Selective elimination of nuclease activities led to frequent spontaneous mutations and accumulation of incompletely digested DNA fragments in apoptotic cells. The mutant mice were predisposed to autoimmunity, chronic inflammation and cancers. The mutator phenotype results in the initiation of cancer, whereas chronic inflammation promotes the cancer progression. The current work exemplifies the approach of studying the mechanisms of individual polymorphisms and somatic mutations in cancer development, and may serve as a reference in developing new therapeutic regimens through the suppression of inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FEN1 mutations identified in human cancers have a segregated nuclease activity profile.
Figure 2: E160D cells are sensitive to DNA-damaging agents and show a strong mutator phenotype.
Figure 3: E160D mice accumulate apoptotic DNA in tissues as a result of retarded apoptotic DNA degradation and increased DNA damage–induced apoptosis.
Figure 4: E160D mice develop autoimmunity.
Figure 5: E160D mice are highly susceptible to cancers as a result of their mutator phenotype and chronic inflammation.

Similar content being viewed by others

References

  1. Lieber, M.R. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19, 233–240 (1997).

    Article  CAS  Google Scholar 

  2. Liu, Y., Kao, H.I. & Bambara, R.A. Flap endonuclease 1: a central component of DNA metabolism. Annu. Rev. Biochem. 73, 589–615 (2004).

    Article  CAS  Google Scholar 

  3. Shen, B. et al. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays 27, 717–729 (2005).

    Article  CAS  Google Scholar 

  4. Harrington, J.J. & Lieber, M.R. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 13, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  5. Kucherlapati, M. et al. Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression. Proc. Natl. Acad. Sci. USA 99, 9924–9929 (2002).

    Article  CAS  Google Scholar 

  6. Kikuchi, K. et al. Fen-1 facilitates homologous recombination by removing divergent sequences at DNA break ends. Mol. Cell. Biol. 25, 6948–6955 (2005).

    Article  CAS  Google Scholar 

  7. Parrish, J.Z., Yang, C., Shen, B. & Xue, D. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J. 22, 3451–3460 (2003).

    Article  CAS  Google Scholar 

  8. Zheng, L. et al. Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep. 6, 83–89 (2005).

    Article  CAS  Google Scholar 

  9. Johnson, R.E., Kovvali, G.K., Prakash, L. & Prakash, S. Requirement of the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA. Science 269, 238–240 (1995).

    Article  CAS  Google Scholar 

  10. Reagan, M.S., Pittenger, C., Siede, W. & Friedberg, E.C. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J. Bacteriol. 177, 364–371 (1995).

    Article  CAS  Google Scholar 

  11. Tishkoff, D.X., Filosi, N., Gaida, G.M. & Kolodner, R.D. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88, 253–263 (1997).

    Article  CAS  Google Scholar 

  12. Henneke, G., Friedrich-Heineken, E. & Hubscher, U. Flap endonuclease 1: a novel tumour suppresser protein. Trends Biochem. Sci. 28, 384–390 (2003).

    Article  CAS  Google Scholar 

  13. Loeb, L.A., Loeb, K.R. & Anderson, J.P. Multiple mutations and cancer. Proc. Natl. Acad. Sci. USA 100, 776–781 (2003).

    Article  CAS  Google Scholar 

  14. Merlo, L.M., Pepper, J.W., Reid, B.J. & Maley, C.C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    Article  CAS  Google Scholar 

  15. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  CAS  Google Scholar 

  16. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  Google Scholar 

  17. Lambert, P.H. & Dixon, F.J. Pathogenesis of the glomerulonephritis of NZB/W mice. J. Exp. Med. 127, 507–522 (1968).

    Article  CAS  Google Scholar 

  18. Zeng, D., Liu, Y., Sidobre, S., Kronenberg, M. & Strober, S. Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J. Clin. Invest. 112, 1211–1222 (2003).

    Article  CAS  Google Scholar 

  19. Lutz, H.U. & Jelezarova, E. Complement amplification revisited. Mol. Immunol. 43, 2–12 (2006).

    Article  CAS  Google Scholar 

  20. Napirei, M. et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat. Genet. 25, 177–181 (2000).

    Article  CAS  Google Scholar 

  21. Bielas, J.H., Loeb, K.R., Rubin, B.P., True, L.D. & Loeb, L.A. Human cancers express a mutator phenotype. Proc. Natl. Acad. Sci. USA 103, 18238–18242 (2006).

    Article  CAS  Google Scholar 

  22. Ohgaki, H. et al. APC mutations are infrequent but present in human lung cancer. Cancer Lett. 207, 197–203 (2004).

    Article  CAS  Google Scholar 

  23. Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  24. Slebos, R.J. et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 323, 561–565 (1990).

    Article  CAS  Google Scholar 

  25. Soussi, T. & Beroud, C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat. Rev. Cancer 1, 233–240 (2001).

    Article  CAS  Google Scholar 

  26. Zochbauer-Muller, S., Gazdar, A.F. & Minna, J.D. Molecular pathogenesis of lung cancer. Annu. Rev. Physiol. 64, 681–708 (2002).

    Article  CAS  Google Scholar 

  27. Wang, Y. et al. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat. Genet. 37, 750–755 (2005).

    Article  CAS  Google Scholar 

  28. Vogelstein, B., Lane, D. & Levine, A.J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  29. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  Google Scholar 

  30. Feinberg, A.P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006).

    Article  CAS  Google Scholar 

  31. Kalinowska, M., Garncarz, W., Pietrowska, M., Garrard, W.T. & Widlak, P. Regulation of the human apoptotic DNase/RNase endonuclease G: involvement of Hsp70 and ATP. Apoptosis 10, 821–830 (2005).

    Article  CAS  Google Scholar 

  32. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  Google Scholar 

  33. Ishii, K.J. et al. A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    Article  CAS  Google Scholar 

  34. Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 202, 1333–1339 (2005).

    Article  CAS  Google Scholar 

  35. Hahn, B.H. Antibodies to DNA. N. Engl. J. Med. 338, 1359–1368 (1998).

    Article  CAS  Google Scholar 

  36. Grohmann, U. et al. IL-12 acts directly on DC to promote nuclear localization of NF-κB and primes DC for IL-12 production. Immunity 9, 315–323 (1998).

    Article  CAS  Google Scholar 

  37. Lee, S.O., Lou, W., Nadiminty, N., Lin, X. & Gao, A.C. Requirement for NF-κB in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate 64, 160–167 (2005).

    Article  CAS  Google Scholar 

  38. Moller, B. et al. Soluble tumor necrosis factor (TNF) receptors conserve TNF bioactivity in meningitis patient spinal fluid. J. Infect. Dis. 174, 557–563 (1996).

    Article  CAS  Google Scholar 

  39. Romanelli, R.G. et al. Thrombopoietin stimulates migration and activates multiple signaling pathways in hepatoblastoma cells. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G120–G128 (2006).

    Article  CAS  Google Scholar 

  40. Luster, A.D. Chemokines—chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436–445 (1998).

    Article  CAS  Google Scholar 

  41. Schoppmann, S.F. et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161, 947–956 (2002).

    Article  CAS  Google Scholar 

  42. Pahl, H.L. Activators and target genes of Rel/NF-KB transcription factors. Oncogene 18, 6853–6866 (1999).

    Article  CAS  Google Scholar 

  43. Greten, F.R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  Google Scholar 

  44. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  Google Scholar 

  45. Zheng, L., Dai, H., Qiu, J., Huang, Q. & Shen, B. Disruption of the FEN-1/PCNA interaction results in DNA replication defects, pulmonary hypoplasia, pancytopenia, and newborn lethality in mice. Mol. Cell. Biol. 27, 3176–3186 (2007).

    Article  CAS  Google Scholar 

  46. Scherer, S. & Davis, R.W. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. USA 76, 4951–4955 (1979).

    Article  CAS  Google Scholar 

  47. Sobol, R.W. et al. Requirement of mammalian DNA polymerase-β in base-excision repair. Nature 379, 183–186 (1996).

    Article  CAS  Google Scholar 

  48. Fournie, G.J. Detection of nucleosome-IgG immune complexes in ascites from mice transplanted with anti-DNA antibody-secreting hybridomas and in plasma from MRL-lpr/lpr mice. Clin. Exp. Immunol. 104, 236–240 (1996).

    Article  CAS  Google Scholar 

  49. Koay, M.A. et al. Impaired pulmonary NF-κB activation in response to lipopolysaccharide in NADPH oxidase-deficient mice. Infect. Immun. 69, 5991–5996 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge G. Pfeifer, M. Lieber, W. Chen, K. Justus, L.D. Finger and S. Alas for their critical review of the manuscript. We thank R. Kolodner (University of California, San Diego) for kindly providing yeast strains, D. Zeng (City of Hope) for providing serum standard of antibodies to nuclear antigens and dsDNA, and the City of Hope DNA sequencing core facility for DNA sequencing analyses. This work was supported by a US National Institutes of Health grant R01CA073764 to B.H.S. and by the lung cancer program of City of Hope's Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. designed and coordinated experiments for FEN1 mutation analysis in human mutation detection, conducted biochemical and mouse phenotype analyses, and contributed to manuscript preparation. H.F. and M.Z. conducted FEN1 mutation screening and genotyping and mouse anatomic analysis. M.L., J.Q. and W.T. constructed E160D Fen1 mutant mice and derived wild-type and Fen1-mutant MEF cells. P.S. conducted yeast genetic experiments. Q.H. conducted pathological and histological analyses. X.Z. and D.L. contributed to FEN1 mutation screening in human cancer specimens. K.K. supervised the FEN1 mutation screening and genotyping and histological analysis, and contributed to manuscript preparation. B.S. supervised the entire project, designed and coordinated most of the experiments in this study, and contributed to manuscript preparation.

Corresponding author

Correspondence to Binghui Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

FEN1 mutation detection in human cancers. (PDF 30 kb)

Supplementary Fig. 2

Knock-in of E160D Fen1 mutant in mouse germline. (PDF 163 kb)

Supplementary Fig. 3

E160D mice develop subcutaneous inflammation, lymphoproliferative disorder, and extramedular hematopoiesis. (PDF 156 kb)

Supplementary Fig. 4

Analysis for loss of heterozygosity of lung tumors in heterozygous E160D mice. (PDF 98 kb)

Supplementary Table 1

FEN1 mutations identified in 12 major human cancers. (PDF 18 kb)

Supplementary Table 2

Cytokine profiles of WT normal and E160D inflammatory and adenoma lung tissues. (PDF 31 kb)

Supplementary Table 3

Oligonucleotide sequences and their applications in this study. (PDF 37 kb)

Supplementary Methods (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, L., Dai, H., Zhou, M. et al. Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med 13, 812–819 (2007). https://doi.org/10.1038/nm1599

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1599

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing