Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Angiogenic inhibition reduces germinal matrix hemorrhage

Abstract

The germinal matrix of premature infants is selectively vulnerable to hemorrhage within the first 48 h of life. To assess the role of vascular immaturity in germinal matrix hemorrhage (GMH), we evaluated germinal matrix angiogenesis in human fetuses and premature infants, as well as in premature rabbit pups, and noted active vessel remodeling in all three. Vascular endothelial growth factor (VEGF), angiopoietin-2 and endothelial cell proliferation were present at consistently higher levels in the germinal matrix relative to the white matter anlagen and cortical mantle. On that basis, we asked whether prenatal treatment with either of two angiogenic inhibitors, the COX-2 inhibitor celecoxib, or the VEGFR2 inhibitor ZD6474, could suppress the incidence of GMH in premature rabbit pups. Celecoxib treatment decreased angiopoietin-2 and VEGF levels as well as germinal matrix endothelial proliferation. Furthermore, treatment with celecoxib or ZD6474 substantially decreased the incidence of GMH. Thus, by suppressing germinal matrix angiogenesis, prenatal celecoxib or ZD6474 treatment may be able to reduce both the incidence and severity of GMH in susceptible premature infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGF expression is greater in germinal matrix than in cortex or white matter in premature infants and rabbit pups.
Figure 2: ANGPT-2 levels are greater in the germinal matrix than in the cortex or white matter in both humans and rabbits.
Figure 3: Endothelial proliferation was higher in GM than in cortex or WM in humans and rabbits.
Figure 4: PTGS2 levels, but not PTGS1 levels, are higher in the germinal matrix than in the cortex or white matter.
Figure 5: Germinal matrix hemorrhage in rabbit pups.

Similar content being viewed by others

References

  1. Heuchan, A.M., Evans, N., Henderson Smart, D.J. & Simpson, J.M. Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995–97. Arch. Dis. Child. Fetal Neonatal Ed. 86, F86–F90 (2002).

    Article  CAS  Google Scholar 

  2. The Vermont-Oxford Trials Network. Very low birth weight outcomes for 1990. Investigators of the Vermont-Oxford Trial Network Database Project. Pediatrics 91, 540–545 (1993).

  3. Ballabh, P., Braun, A. & Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    Article  CAS  Google Scholar 

  4. Du Plessis, A.J. & Volpe, J.J. Perinatal brain injury in the preterm and term newborn. Curr. Opin. Neurol. 15, 151–157 (2002).

    Article  Google Scholar 

  5. Ballabh, P., Braun, A. & Nedergaard, M. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr. Res. 56, 117–124 (2004).

    Article  Google Scholar 

  6. Vates, G.E., Hashimoto, T., Young, W.L. & Lawton, M.T. Angiogenesis in the brain during development: the effects of vascular endothelial growth factor and angiopoietin-2 in an animal model. J. Neurosurg. 103, 136–145 (2005).

    Article  CAS  Google Scholar 

  7. Wong, C.G., Rich, K.A., Liaw, L.H., Hsu, H.T. & Berns, M.W. Intravitreal VEGF and bFGF produce florid retinal neovascularization and hemorrhage in the rabbit. Curr. Eye Res. 22, 140–147 (2001).

    Article  CAS  Google Scholar 

  8. Ferrara, N., Gerber, H.P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  Google Scholar 

  9. Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).

    Article  CAS  Google Scholar 

  10. Zhu, Y. et al. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke 36, 1533–1537 (2005).

    Article  CAS  Google Scholar 

  11. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    Article  CAS  Google Scholar 

  12. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  13. Hammes, H.P. et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53, 1104–1110 (2004).

    Article  CAS  Google Scholar 

  14. Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    Article  CAS  Google Scholar 

  15. Scharpfenecker, M., Fiedler, U., Reiss, Y. & Augustin, H.G. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell Sci. 118, 771–780 (2005).

    Article  CAS  Google Scholar 

  16. Hanahan, D. Signaling vascular morphogenesis and maintenance. Science 277, 48–50 (1997).

    Article  CAS  Google Scholar 

  17. Jain, R.K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  Google Scholar 

  18. Wang, D., Buchanan, F.G., Wang, H., Dey, S.K. & DuBois, R.N. Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res. 65, 1822–1829 (2005).

    Article  CAS  Google Scholar 

  19. Pichiule, P., Chavez, J.C. & LaManna, J.C. Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J. Biol. Chem. 279, 12171–12180 (2004).

    Article  CAS  Google Scholar 

  20. Wu, Y.L., Fu, S.L., Zhang, Y.P., Qiao, M.M. & Chen, Y. Cyclooxygenase-2 inhibitors suppress angiogenesis and growth of gastric cancer xenografts. Biomed. Pharmacother. 59 (suppl. 2), S289–S292 (2005).

    Article  CAS  Google Scholar 

  21. Masferrer, J.L. et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60, 1306–1311 (2000).

    CAS  PubMed  Google Scholar 

  22. Dembo, G., Park, S.B. & Kharasch, E.D. Central nervous system concentrations of cyclooxygenase-2 inhibitors in humans. Anesthesiology 102, 409–415 (2005).

    Article  CAS  Google Scholar 

  23. Hartleroad, J.Y. et al. Effect of maternal administration of selective cyclooxygenase (COX)-2 inhibitors on renal size, growth factors, proteinases, and COX-2 secretion in the fetal rabbit. Biol. Neonate 87, 246–253 (2005).

    Article  CAS  Google Scholar 

  24. Stika, C.S. et al. A prospective randomized safety trial of celecoxib for treatment of preterm labor. Am. J. Obstet. Gynecol. 187, 653–660 (2002).

    Article  CAS  Google Scholar 

  25. Herbst, R.S. et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol. 20, 3792–3803 (2002).

    Article  CAS  Google Scholar 

  26. Virgintino, D. et al. VEGF expression is developmentally regulated during human brain angiogenesis. Histochem. Cell Biol. 119, 227–232 (2003).

    CAS  PubMed  Google Scholar 

  27. Mayer, H. et al. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J. Cell. Biochem. 95, 827–839 (2005).

    Article  CAS  Google Scholar 

  28. Lorenzo, A.V., Welch, K. & Conner, S. Spontaneous germinal matrix and intraventricular hemorrhage in prematurely born rabbits. J. Neurosurg. 56, 404–410 (1982).

    Article  CAS  Google Scholar 

  29. Leahy, K.M. et al. Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res. 62, 625–631 (2002).

    CAS  PubMed  Google Scholar 

  30. Sanborn, R. & Blanke, C.D. Cyclooxygenase-2 inhibition in colorectal cancer: boom or bust? Semin. Oncol. 32, 69–75 (2005).

    Article  CAS  Google Scholar 

  31. Schnurch, H. & Risau, W. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119, 957–968 (1993).

    CAS  PubMed  Google Scholar 

  32. Key, G. et al. New Ki-67-equivalent murine monoclonal antibodies (MIB 1–3) generated against bacterially expressed parts of the Ki-67 cDNA containing three 62 base pair repetitive elements encoding for the Ki-67 epitope. Lab. Invest. 68, 629–636 (1993).

    CAS  PubMed  Google Scholar 

  33. Isobe, K. et al. Measurement of cerebral oxygenation in neonates after vaginal delivery and cesarean section using full-spectrum near infrared spectroscopy. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132, 133–138 (2002).

    Article  Google Scholar 

  34. Alvarez-Soria, M.A. et al. Long term NSAID treatment inhibits COX-2 synthesis in the knee synovial membrane of patients with osteoarthritis: differential proinflammatory cytokine profile between celecoxib and aceclofenac. Ann. Rheum. Dis. 65, 998–1005 (2006).

    Article  CAS  Google Scholar 

  35. El-Rayes, B.F., Ali, S., Sarkar, F.H. & Philip, P.A. Cyclooxygenase-2-dependent and -independent effects of celecoxib in pancreatic cancer cell lines. Mol. Cancer Ther. 3, 1421–1426 (2004).

    CAS  PubMed  Google Scholar 

  36. Conner, E.S., Lorenzo, A.V., Welch, K. & Dorval, B. The role of intracranial hypotension in neonatal intraventricular hemorrhage. J. Neurosurg. 58, 204–209 (1983).

    Article  CAS  Google Scholar 

  37. Papile, L.A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J. Pediatr. 92, 529–534 (1978).

    Article  CAS  Google Scholar 

  38. Muscara, M.N., Vergnolle, N., Lovren, F., Triggle, C.R., Elliott, S.N., Asfaha, S. & Wallace, J.L. Selective cyclo-oxygenase-2 inhibition with celecoxib elevates blood pressure and promotes leukocyte adherence. Br. J. Pharmacol. 129, 1423–1430 (2000).

    Article  CAS  Google Scholar 

  39. Tommiska, V. et al. A national short-term follow-up study of extremely low birth weight infants born in Finland in 1996–1997. Pediatrics 107, E2 (2001).

    Article  CAS  Google Scholar 

  40. Beverley, D.W., Chance, G.W. & Coates, C.F. Intraventricular haemorrhage–timing of occurrence and relationship to perinatal events. Br. J. Obstet. Gynaecol. 91, 1007–1013 (1984).

    Article  CAS  Google Scholar 

  41. Tsiantos, A. et al. Intracranial hemorrhage in the prematurely born infant. Timing of clots and evaluation of clinical signs and symptoms. J. Pediatr. 85, 854–859 (1974).

    Article  CAS  Google Scholar 

  42. Sawaoka, H. et al. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab. Invest. 79, 1469–1477 (1999).

    CAS  PubMed  Google Scholar 

  43. Amrite, A.C., Ayalasomayajula, S.P., Cheruvu, N.P. & Kompella, U.B. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest. Ophthalmol. Vis. Sci. 47, 1149–1160 (2006).

    Article  Google Scholar 

  44. Fukuda, R., Kelly, B. & Semenza, G.L. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 63, 2330–2334 (2003).

    CAS  PubMed  Google Scholar 

  45. Lukiw, W.J. et al. Coordinate activation of HIF-1 and NF-kappaB DNA binding and COX-2 and VEGF expression in retinal cells by hypoxia. Invest. Ophthalmol. Vis. Sci. 44, 4163–4170 (2003).

    Article  Google Scholar 

  46. Sakai, M. et al. Evaluation of the tocolytic effect of a selective cyclooxygenase-2 inhibitor in a mouse model of lipopolysaccharide-induced preterm delivery. Mol. Hum. Reprod. 7, 595–602 (2001).

    Article  CAS  Google Scholar 

  47. The Boulder Committee. Embryonic vertebrate central nervous system: revised terminology. Anat. Rec. 28, 3019–3024 (1970).

  48. Ballabh, P., Hu, F., Kumarasiri, M., Braun, A. & Nedergaard, M. Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter. Pediatr. Res. 58, 791–798 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Etlinger for critical evaluation of the manuscript and J. Abrahams for technical and editorial assistance. We thank T. Takano and X. Han for assistance with confocal imaging. Supported by the US National Institutes of Health/National Institute of Neurological Disorders and Stroke grants NS050586 to P.B., R01NS29813 to S.G., and Ro130007 and the Philip Morris Organization to M.N.

Author information

Authors and Affiliations

Authors

Contributions

P.B., in whose laboratory this study was performed, planned and supervised experiments, performed confocal microscopy, data analysis and co-wrote the manuscript; H.X. and F.H. performed the animal experiments, immunostaining and western blot analysis; A.B. chose and contributed samples and assisted in editing the manuscript; A.R., K.S., Z.U. and A.C. contributed to laser dissection of brain sections, and to PCR on human and rabbit brains, and also performed the related data analysis; N.L. performed intracranial pressure and cerebral blood flow monitoring of the rabbit pups; S.G. and M.N. assisted in experimental design and planning, and co-wrote the manuscript; M.N. provided direct support for the study.

Corresponding author

Correspondence to Praveen Ballabh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

VEGF expression in blood vessels and glial cells of human GM, cortex and WM. (PDF 969 kb)

Supplementary Fig. 2

VEGFR1 expression comparable among cortex, WM and GM in human and rabbit subjects. (PDF 113 kb)

Supplementary Fig. 3

VEGFR2 protein and mRNA expression similar in human and rabbit neonates. (PDF 143 kb)

Supplementary Fig. 4

Tie 2 expression comparable among cortex, WM and GM in humans and rabbits. (PDF 189 kb)

Supplementary Fig. 5

Greater expression of ANGPT-1 protein in fetuses than premature infants. (PDF 355 kb)

Supplementary Fig. 6

Intracranial cerebral pressure, cerebral blood flow, and mean arterial blood pressure on glycerol treatment in celecoxib treated as well as untreated pups. (PDF 55 kb)

Supplementary Fig. 7

Glycerol does not affect angiogenesis and angiogenic factors. (PDF 23 kb)

Supplementary Fig. 8

ZD6474 downregulates VEGFR2 and ERK1/2 phosphorylation. (PDF 170 kb)

Supplementary Methods (PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballabh, P., Xu, H., Hu, F. et al. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med 13, 477–485 (2007). https://doi.org/10.1038/nm1558

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1558

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing