Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression

Abstract

Although STAT5A and STAT5B have some nonredundant functional properties, their distinct contributions to carcinogenesis are not clearly defined. Here we report that STAT5A expression is selectively inhibited by DNA methylation of the STAT5A gene promoter region in cells expressing the oncogenic tyrosine kinase NPM1-ALK (also known as NPM-ALK). The DNA methylation is induced by NPM1-ALK itself via STAT3, and is associated with binding to the promoter of the gene encoding MeCP2 capping protein and with lack of binding of the STAT5A gene transcription activator SP1. Reversal of methylation by the DNA methyltransferase inhibitor 5′-aza-2′-deoxycytidine restores SP1 binding and STAT5A gene expression. Notably, the induced or exogenously expressed STAT5A protein binds to the enhancer and intron 14 of the NPM1-ALK gene and triggers selective suppression of NPM1-ALK expression. These results show that NPM1-ALK induces epigenetic silencing of STAT5A gene and that STAT5A protein can act as a key tumor suppressor by reciprocally inhibiting expression of NPM1-ALK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lack of STAT5A expression in NPM1-ALK+ T cells.
Figure 2: Methylation of CpG island within STAT5A gene promoter region in NPM1-ALK+ T cells.
Figure 3: Demethylation of STAT5A promoter region results in recruitment of SP1 to the promoter and expression of STAT5A mRNA and protein.
Figure 4: STAT5A binds to the enhancer of the NPM1-ALK gene and downregulates expression of the gene.
Figure 5: NPM1-ALK promotes epigenetic silencing of the STAT5A gene.
Figure 6: STAT3-mediated inhibition of STAT5A gene expression and effect of DNMT inhibition on growth of NPM1-ALK+ T cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Moriggl, R., Sexl, V., Piekorz, R., Topham, D. & Ihle, J.N. STAT5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 10, 249–259 (1999).

    Article  CAS  Google Scholar 

  2. Buitenhuis, M., Coffer, P.J. & Koenderman, L. Signal transducer and activator of transcription 5 (STAT5). Int. J. Biochem. Cell Biol. 36, 2120–2124 (2004).

    Article  CAS  Google Scholar 

  3. Migone, T.S. et al. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269, 79–81 (1995).

    Article  CAS  Google Scholar 

  4. Xu, X. et al. Constitutive activation of different Jak tyrosine kinases in human T cell leukemia virus type 1 (HTLV-1) Tax protein or virus-transformed cells. J. Clin. Invest. 96, 1548–1555 (1995).

    Article  CAS  Google Scholar 

  5. Zhang, Q. et al. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc. Natl. Acad. Sci. USA 93, 9148–9153 (1996).

    Article  CAS  Google Scholar 

  6. Nieborowska-Skorska, M. et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/ anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 61, 6517–6523 (2001).

    CAS  PubMed  Google Scholar 

  7. Gouilleux-Gruart, V. et al. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 87, 1692–1697 (1996).

    CAS  PubMed  Google Scholar 

  8. Nieborowska-Skorska, M. et al. Signal transducer and Activator of Transcription (STAT)5 activation by BCR/ABL is dependent on intact src homology (SH3) and SH2 domains of BCR/ABL and is required for leukemogenesis. J. Exp. Med. 189, 1229–1242 (1999).

    Article  CAS  Google Scholar 

  9. Clevenger, C.V. Roles and Regulation of STAT Family Transcription Factors in Human Breast Cancer. Am. J. Pathol. 165, 1449–1460 (2004).

    Article  CAS  Google Scholar 

  10. Lai, S.Y. et al. Erythropoietin-mediated activation of JAK-STAT signaling contributes to cellular invasion in head and neck squamous cell carcinoma. Oncogene 24, 4442–4449 (2005).

    Article  CAS  Google Scholar 

  11. Liu, X. et al. STAT5A is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11, 179–186 (1997).

    Article  CAS  Google Scholar 

  12. Nakajima, H. et al. An indirect effect of STAT5A in IL-2-induced proliferation: a critical role for STAT5A in IL-2-mediated IL-2 receptor alpha chain induction. Immunity 7, 691–701 (1997).

    Article  CAS  Google Scholar 

  13. Davey, H.W., Park, S.H., Grattan, D.R., McLachlan, M.J. & Waxman, D.J. STAT5B-deficient mice are growth hormone pulse-resistant. Role of STAT5B in sex-specific liver p450 expression. J. Biol. Chem. 274, 35331–35336 (1999).

    Article  CAS  Google Scholar 

  14. Imada, K. et al. STAT5B is essential for natural killer cell-mediated proliferation and cytolytic activity. J. Exp. Med. 188, 2067–2074 (1998).

    Article  CAS  Google Scholar 

  15. Cui, Y. et al. Inactivation of STAT5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol. Cell. Biol. 24, 8037–8047 (2004).

    Article  CAS  Google Scholar 

  16. Herman, J.G. & Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003).

    Article  CAS  Google Scholar 

  17. Wade, P.A. Methyl CpG-binding proteins: coupling chromatin architecture to gene regulation. Oncogene 20, 3166–3173 (2001).

    Article  CAS  Google Scholar 

  18. Wasik, M.A. Expression of anaplastic lymphoma kinase (ALK) in non-Hodgkin's lymphomas and other malignancies: biological, diagnostic and clinical implications. Am. J. Clin. Pathol. 118, S81–S92 (2002).

    PubMed  Google Scholar 

  19. Morris, S.W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281–1284 (1994).

    Article  CAS  Google Scholar 

  20. Shiota, M. et al. Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene 9, 1567–1574 (1994).

    CAS  PubMed  Google Scholar 

  21. Fujimoto, J. et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc. Natl. Acad. Sci. USA 93, 4181–4186 (1996).

    Article  CAS  Google Scholar 

  22. Bischof, D., Pulford, K., Mason, D.Y. & Morris, S.W. Role of the nucleophosmin (NPM) portion of the non-Hodgkins lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol. Cell. Biol. 17, 2312–2325 (1997).

    Article  CAS  Google Scholar 

  23. Kuefer, M.U. et al. Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 90, 2901–2910 (1997).

    CAS  PubMed  Google Scholar 

  24. Chiarle, R. et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101, 1919–1927 (2003).

    Article  CAS  Google Scholar 

  25. Zhang, Q. et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immunol. 168, 466–474 (2002).

    Article  CAS  Google Scholar 

  26. Hendry, L. & John, S. Regulation of STAT signaling by proteolytic processing. Eur. J. Biochem. 271, 4613–4620 (2004).

    Article  CAS  Google Scholar 

  27. Ambrosio, R. et al. The structure of human STAT5A and B genes reveals two regions of nearly identical sequence and an alternative tissue specific STAT5B promoter. Gene 285, 311–318 (2002).

    Article  CAS  Google Scholar 

  28. Crispi, S. et al. Characterization of the human STAT5A and STAT5B promoters: evidence of a positive and negative mechanism of transcriptional regulation. FEBS Lett. 562, 27–34 (2004).

    Article  CAS  Google Scholar 

  29. Soldaini, E. et al. DNA Binding Site Selection of Dimeric and Tetrameric STAT5 Proteins Reveals a Large Repertoire of Divergent Tetrameric STAT5A Binding Sites. Mol. Cell. Biol. 20, 389–401 (2000).

    Article  CAS  Google Scholar 

  30. Ehret, G.B. et al. DNA Binding Specificity of Different STAT Proteins. J. Biol. Chem. 276, 6675–6688 (2001).

    Article  CAS  Google Scholar 

  31. Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626 (2002).

    Article  CAS  Google Scholar 

  32. Bondarenko, V.A., Liu, Y.V., Jiang, Y.I. & Studitsky, V.M. Communication over a large distance: enhancers and insulators. Biochem. Cell Biol. 81, 241–251 (2003).

    Article  CAS  Google Scholar 

  33. Moriggl, R. et al. STAT5 tetramer formation is associated with leukemogenesis. Cancer Cell 7, 87–99 (2005).

    Article  CAS  Google Scholar 

  34. Zhang, Q. et al. STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 108, 1058–1064 (2006).

    Article  CAS  Google Scholar 

  35. Zhang, Q. et al. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc. Natl. Acad. Sci. USA 102, 6948–6953 (2005).

    Article  CAS  Google Scholar 

  36. Yu, H. & Jove, R. The STATs of cancer–new molecular targets come of age. Nat. Rev. Cancer 4, 97–105 (2004).

    Article  CAS  Google Scholar 

  37. Nevalainen, M.T. et al. Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J. Clin. Oncol. 22, 2053–2060 (2004).

    Article  CAS  Google Scholar 

  38. Sultan, A.S. et al. STAT5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene 24, 746–760 (2005).

    Article  CAS  Google Scholar 

  39. Marzec, M. et al. Inhibition of anaplastic lymphoma kinase (ALK) enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. Lab. Invest. 85, 1544–1554 (2005).

    Article  CAS  Google Scholar 

  40. Wan, W. et al. Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood 107, 1617–1623 (2006).

    Article  CAS  Google Scholar 

  41. Galkin, A.V. et al. Identification of NVP-TAE684, a potent, selective and efficacious inhibitor of NPM/ALK. Proc. Natl. Acad. Sci. USA 104, 270–275 (2007).

    Article  CAS  Google Scholar 

  42. Hehlmann, R., Berger, U. & Hochhaus, A. Chronic myeloid leukemia: a model for oncology. Ann. Hematol. 84, 487–497 (2005).

    Article  Google Scholar 

  43. Claus, R. & Lübbert, M. Epigenetic targets in hematopoietic malignancies. Oncogene 22, 6489–6496 (2003).

    Article  CAS  Google Scholar 

  44. Wlodarski, P. et al. Activation of mTOR in transformed B lymphocytes is nutrient-dependent but independent of Akt, MEK, IGF-I, and serum. Cancer Res. 65, 7800–7808 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Cancer Institute grants R01-CA89194 and R01-CA96856.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Zhang or Mariusz A Wasik.

Supplementary information

Supplementary Text and Figures

Supplementary Information Title Page and Supplementary Figs. 1–3 (PDF 1717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Wang, H., Liu, X. et al. STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression. Nat Med 13, 1341–1348 (2007). https://doi.org/10.1038/nm1659

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1659

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing