Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation in Alzheimer disease: driving force, bystander or beneficial response?

Abstract

Alzheimer disease is a progressive dementia with unknown etiology that affects a growing number of the aging population. Increased expression of inflammatory mediators in postmortem brains of people with Alzheimer disease has been reported, and epidemiological studies link the use of anti-inflammatory drugs with reduced risk for the disorder. On the initial basis of this kind of evidence, inflammation has been proposed as a possible cause or driving force of Alzheimer disease. If true, this could have important implications for the development of new treatments. Alternatively, inflammation could simply be a byproduct of the disease process and may not substantially alter its course. Or components of the inflammatory response might even be beneficial and slow the disease. To address these possibilities, we need to determine whether inflammation in Alzheimer disease is an early event, whether it is genetically linked with the disease and whether manipulation of inflammatory pathways changes the course of the pathology. Although there is still little evidence that inflammation triggers or promotes Alzheimer disease, increasing evidence from mouse models suggests that certain inflammatory mediators are potent drivers of the disease. Related factors, on the other hand, elicit beneficial responses and can reduce disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible roles of inflammation and NSAIDs in Alzheimer disease pathogenesis.
Figure 2: Reported effects of NSAIDs with respect to Alzheimer disease and APP processing.
Figure 3: Transgenic and knockout studies in APP mice reveal beneficial and detrimental effects of immune and inflammatory factors.

Similar content being viewed by others

References

  1. Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83, 4913–4917 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Akiyama, H. et al. Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383–421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wyss-Coray, T. & Mucke, L. Inflammation in neurodegenerative disease: a double-edged sword. Neuron 35, 419–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Iqbal, K. et al. Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers. Ann. Neurol. 58, 748–757 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Eikelenboom, P. & Stam, F.C. Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol. (Berl.) 57, 239–242 (1982).

    Article  CAS  Google Scholar 

  9. McGeer, P.L., Itagaki, S., Boyes, B.E. & McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285–1291 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Katsel, P.L., Davis, K.L. & Haroutunian, V. Large-scale microarray studies of gene expression in multiple regions of the brain in schizophrenia and Alzheimer's disease. Int. Rev. Neurobiol. 63, 41–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Blalock, E.M. et al. Harnessing the power of gene microarrays for the study of brain aging and Alzheimer's disease: statistical reliability and functional correlation. Ageing Res. Rev. 4, 481–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Colangelo, V. et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70, 462–473 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Groom, G.N., Junck, L., Foster, N.L., Frey, K.A. & Kuhl, D.E. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer's disease. J. Nucl. Med. 36, 2207–2210 (1995).

    CAS  PubMed  Google Scholar 

  14. Cagnin, A. et al. In-vivo measurement of activated microglia in dementia. Lancet 358, 461–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Versijpt, J.J. et al. Assessment of neuroinflammation and microglial activation in Alzheimer's disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study. Eur. Neurol. 50, 39–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Mahley, R.W. & Rall, S.C., Jr. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 1, 507–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Mahley, R. & Huang, Y. Apolipoprotein E: from atherosclerosis to Alzheimer's disease and beyond. Curr. Opin. Lipidol. 10, 207–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Lynch, J.R. et al. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. J. Biol. Chem. 278, 48529–48533 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. van den Elzen, P. et al. Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437, 906–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Kanter, J.L. et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12, 138–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Chapman, J. et al. APOE genotype is a major predictor of long-term progression of disability in MS. Neurology 56, 312–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. McGeer, P.L., McGeer, E., Rogers, J. & Sibley, J. Anti-inflammatory drugs and Alzheimer disease. Lancet 335, 1037 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Rogers, J. et al. Clinical trial of indomethacin in Alzheimer's disease. Neurology 43, 1609–1611 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Scharf, S., Mander, A., Ugoni, A., Vajda, F. & Christophidis, V.N. A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer's disease. Neurology 53, 197–201 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Hoozemans, J.J. & O'Banion, M.K. The role of COX-1 and COX-2 in Alzheimer's disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs. Curr. Drug Targets CNS Neurol. Disord. 4, 307–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Mackenzie, I.R.A. & Munoz, D.G. Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology 50, 986–990 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Lim, G.P. et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J. Neurosci. 20, 5709–5714 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morgan, D., Gordon, M.N., Tan, J., Wilcock, D. & Rojiani, A.M. Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J. Neuropathol. Exp. Neurol. 64, 743–753 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Quinn, J. et al. Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer's disease. J. Neuroimmunol. 137, 32–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Lanz, T.A., Fici, G.J. & Merchant, K.M. Lack of specific amyloid-β(1–42) suppression by nonsteroidal anti-inflammatory drugs in young, plaque-free Tg2576 mice and in guinea pig neuronal cultures. J. Pharmacol. Exp. Ther. 312, 399–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, Y. et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Aβ42 by inhibiting Rho. Science 302, 1215–1217 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Tegeder, I., Pfeilschifter, J. & Geisslinger, G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 15, 2057–2072 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Eriksen, J.L. et al. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo. J. Clin. Invest. 112, 440–449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sastre, M. et al. Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc. Natl. Acad. Sci. USA 103, 443–448 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan, Q. et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease. J. Neurosci. 23, 7504–7509 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi, Y. et al. Sulindac sulfide is a noncompetitive γ-secretase inhibitor that preferentially reduces Aβ42 generation. J. Biol. Chem. 278, 18664–18670 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Lleo, A. et al. Nonsteroidal anti-inflammatory drugs lower Aβ42 and change presenilin 1 conformation. Nat. Med. 10, 1065–1066 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Beher, D. et al. Selected non-steroidal anti-inflammatory drugs and their derivatives target γ-secretase at a novel site. Evidence for an allosteric mechanism. J. Biol. Chem. 279, 43419–43426 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Gasparini, L., Rusconi, L., Xu, H., del Soldato, P. & Ongini, E. Modulation of beta-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures. J. Neurochem. 88, 337–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kukar, T. et al. Diverse compounds mimic Alzheimer disease–causing mutations by augmenting Aβ42 production. Nat. Med. 11, 545–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Wyss-Coray, T. Killing pain, killing neurons? Nat. Med. 11, 472–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Tegeder, I. et al. Inhibition of NF-κB and AP-1 activation by R- and S-flurbiprofen. FASEB J. 15, 595–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Sung, S. et al. Modulation of nuclear factor-κB activity by indomethacin influences Aβ levels but not Aβ precursor protein metabolism in a model of Alzheimer's disease. Am. J. Pathol. 165, 2197–2206 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Monsonego, A. & Weiner, H.L. Immunotherapeutic approaches to Alzheimer's disease. Science 302, 834–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Hsia, A. et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc. Natl. Acad. Sci. USA 96, 3228–3233 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Masliah, E. et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F β-amyloid precursor protein and Alzheimer's disease. J. Neurosci. 16, 5795–5811 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. McGowan, E., Eriksen, J. & Hutton, M. A decade of modeling Alzheimer's disease in transgenic mice. Trends Genet. 22, 281–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, Z.L. et al. Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease. Neurobiol. Aging 27, 377–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Dickey, C.A. et al. Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J. Neurosci. 23, 5219–5226 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reddy, P.H. et al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum. Mol. Genet. 13, 1225–1240 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Miller, R.J. & Tran, P.B. Chemokinetics. Neuron 47, 621–623 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bellucci, A. et al. Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am. J. Pathol. 165, 1643–1652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ho, L. et al. Gene expression profiling of the tau mutant (P301L) transgenic mouse brain. Neurosci. Lett. 310, 1–4 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Heneka, M.T. et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflammation [online] 2, 22 (2005) (doi:10.1186/1742-2094-2-22).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nagasaka, Y. et al. A unique gene expression signature discriminates familial Alzheimer's disease mutation carriers from their wild-type siblings. Proc. Natl. Acad. Sci. USA 102, 14854–14859 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Andreasson, K.I. et al. Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J. Neurosci. 21, 8198–8209 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiang, Z. et al. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology. Gene Expr. 10, 271–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Liang, X. et al. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer's disease. J. Neurosci. 25, 10180–10187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shie, F.S., Montine, K.S., Breyer, R.M. & Montine, T.J. Microglial EP2 as a new target to increase amyloid beta phagocytosis and decrease amyloid beta-induced damage to neurons. Brain Pathol. 15, 134–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Carroll, M.C. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol. 16, 545–568 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Eikelenboom, P., Hack, C.E., Rozemuller, J.M. & Stam, F.C. Complement activation in amyloid plaques in Alzheimer's dementia. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 56, 259–262 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Wyss-Coray, T. et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc. Natl. Acad. Sci. USA 99, 10837–10842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fonseca, M.I., Zhou, J., Botto, M. & Tenner, A.J. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J. Neurosci. 24, 6457–6465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wyss-Coray, T. et al. TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat. Med. 7, 612–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat. Med. 9, 453–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Wyss-Coray, T., Lin, C., Sanan, D., Mucke, L. & Masliah, E. Chronic overproduction of TGF-β1 in astrocytes promotes Alzheimer's disease-like microvascular degeneration in transgenic mice. Am. J. Pathol. 156, 139–150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brionne, T.C., Tesseur, I., Masliah, E. & Wyss-Coray, T. Loss of TGF-β1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40, 1133–1145 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Weller, R.O. et al. Cerebral amyloid angiopathy. Amyloid β accumulates in putative interstitial fluid drainage pathways in Alzheimer's disease. Am. J. Pathol. 153, 725–733 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tian, J., Shi, J., Bailey, K. & Mann, D.M. Negative association between amyloid plaques and cerebral amyloid angiopathy in Alzheimer's disease. Neurosci. Lett. 352, 137–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Yamamoto, M. et al. Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am. J. Pathol. 166, 1475–1485 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tan, J. et al. Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice. Nat. Neurosci. 5, 1288–1293 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Wyss-Coray, T. et al. Key signaling pathways regulate the biological activities and accumulation of amyloid-β. Neurobiol. Aging 22, 967–973 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Arancio, O. et al. RAGE potentiates Aβ-induced perturbation of neuronal function in transgenic mice. EMBO J. 23, 4096–4105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abraham, C.R., Shirahama, T. & Potter, H. Alpha 1-antichymotrypsin is associated solely with amyloid deposits containing the beta-protein. Amyloid and cell localization of alpha 1-antichymotrypsin. Neurobiol. Aging 11, 123–129 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Nilsson, L.N. et al. α-1-Antichymotrypsin promotes β-sheet amyloid plaque deposition in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 21, 1444–1451 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mucke, L. et al. Astroglial expression of human α1-antichymotrypsin enhances Alzheimer-like pathology in amyloid protein precursor transgenic mice. Am. J. Pathol. 157, 2003–2010 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Craft, J.M., Watterson, D.M., Frautschy, S.A. & Van Eldik, L.J. Aminopyridazines inhibit beta-amyloid-induced glial activation and neuronal damage in vivo. Neurobiol. Aging 25, 1283–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Li, Y., Liu, L., Barger, S.W. & Griffin, W.S. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 23, 1605–1611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sheng, J.G., Zhu, S.G., Jones, R.A., Griffin, W.S.T. & Mrak, R.E. Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp. Neurol. 163, 388–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Kitazawa, M., Oddo, S., Yamasaki, T.R., Green, K.N. & LaFerla, F.M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 8843–8853 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schneider, A. et al. Hyperphosphorylation and aggregation of tau in experimental autoimmune encephalomyelitis. J. Biol. Chem. 279, 55833–55839 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Wegiel, J. et al. Reduced number and altered morphology of microglial cells in colony stimulating factor-1-deficient osteopetrotic op/op mice. Brain Res. 804, 135–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Kaku, M. et al. Amyloid beta protein deposition and neuron loss in osteopetrotic (op/op) mice. Brain Res. Brain Res. Protoc. 12, 104–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Hickey, W.F. Basic principles of immunological surveillance of the normal central nervous system. Glia 36, 118–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Ono, K. et al. Migration of exogenous immature hematopoietic cells into adult mouse brain parenchyma under GFP-expressing bone marrow chimera. Biochem. Biophys. Res. Commun. 262, 610–614 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Beck, H. et al. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. J. Cereb. Blood Flow Metab. 23, 709–717 (2003).

    Article  PubMed  Google Scholar 

  92. Malm, T.M. et al. Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol. Dis. 18, 134–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Stalder, A.K. et al. Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J. Neurosci. 25, 11125–11132 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Simard, A.R., Soulet, D., Gowing, G., Julien, J.P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Chiang, C.S., McBride, W.H. & Withers, H.R. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother. Oncol. 29, 60–68 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Fiala, M., et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer's disease patients. J. Alzheimers Dis. 7, 221–232; discussion 255–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Togo, T. et al. Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases. J. Neuroimmunol. 124, 83–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Itagaki, S., McGeer, P.L. & Akiyama, H. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer's disease brain tissue. Neurosci. Lett. 91, 259–264 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. Rogers, J., Luber-Narod, J., Styren, S.D. & Civin, W.H. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol. Aging 9, 339–349 (1988).

    Article  CAS  PubMed  Google Scholar 

  100. Skias, D., Bania, M., Reder, A.T., Luchins, D. & Antel, J.P. Senile dementia of Alzheimer's type (SDAT): reduced T8+-cell-mediated suppressor activity. Neurology 35, 1635–1638 (1985).

    Article  CAS  PubMed  Google Scholar 

  101. Pirttila, T., Mattinen, S. & Frey, H. The decrease of CD8-positive lymphocytes in Alzheimer's disease. J. Neurol. Sci. 107, 160–165 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Richartz-Salzburger, E., et al. Altered lymphocyte distribution in Alzheimer's disease. J. Psychiatr. Res. advance online publication, 3 March 2006 (doi:10.1016/j.jpsychires.2006.01.010).

  103. Dysken, M.W. et al. Distribution of peripheral lymphocytes in Alzheimer patients and controls. J. Psychiatr. Res. 26, 213–218 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Trieb, K., Ransmayr, G., Sgonc, R., Lassmann, H. & Grubeck-Loebenstein, B. APP peptides stimulate lymphocyte proliferation in normals, but not in patients with Alzheimer's disease. Neurobiol. Aging 17, 541–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Monsonego, A. et al. Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nath, A. et al. Autoantibodies to amyloid beta-peptide (Aβ) are increased in Alzheimer's disease patients and Aβ antibodies can enhance Aβ neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromolecular Med. 3, 29–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Weksler, M.E. et al. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp. Gerontol. 37, 943–948 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Du, Y. et al. Reduced levels of amyloid β-peptide antibody in Alzheimer's disease. Neurology 57, 801–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Hyman, B.T. et al. Autoantibodies to amyloid-beta in Alzheimer's disease. Ann. Neurol. 49, 808–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Mruthinti, S. et al. Autoimmunity in Alzheimer's disease: increased levels of circulating IgGs binding Aβ and RAGE peptides. Neurobiol. Aging 25, 1023–1032 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Moir, R.D. et al. Autoantibodies to redox-modified oligomeric Aβ are attenuated in the plasma of Alzheimer's disease patients. J. Biol. Chem. 280, 17458–17463 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Eddleston, M. & Mucke, L. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54, 15–36 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Mennicken, F., Maki, R., de Souza, E.B. & Quirion, R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol. Sci. 20, 73–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Gasque, P., Dean, Y.D., McGreal, E.P., Beek, J.V. & Morgan, B.P. Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49, 171–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Warner, T.D. & Mitchell, J.A. Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J. 18, 790–804 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Lehmann, J.M., Lenhard, J.M., Oliver, B.B., Ringold, G.M. & Kliewer, S.A. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406–3410 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Bernardo, A., Ajmone-Cat, M.A., Gasparini, L., Ongini, E. & Minghetti, L. Nuclear receptor peroxisome proliferator-activated receptor-γ is activated in rat microglial cells by the anti-inflammatory drug HCT1026, a derivative of flurbiprofen. J. Neurochem. 92, 895–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Stellwagen, D. & Malenka, R.C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Wahl, S.M. Transforming growth factor beta (TGF-β) in inflammation: a cause and a cure. J. Clin. Immunol. 12, 61–74 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank M. Buckwalter and M. Britschgi for comments on the manuscript, L. Bertram for advice on the use of the AlzGene genetic resource, and O. Arancio and M. Staufenbiel for communicating unpublished data. This work was supported by the John Douglas French Alzheimer's Foundation and the Veterans Administration Geriatric Research, Education and Clinical Center.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response?. Nat Med 12, 1005–1015 (2006). https://doi.org/10.1038/nm1484

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1484

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing