Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness

Abstract

Bidirectional cellular communication is integral to both cancer progression and embryological development. In addition, aggressive tumor cells are phenotypically plastic, sharing many properties with embryonic cells. Owing to the similarities between these two types of cells, the developing zebrafish can be used as a biosensor for tumor-derived signals. Using this system, we show that aggressive melanoma cells secrete Nodal (a potent embryonic morphogen) and consequently can induce ectopic formation of the embryonic axis. We further show that Nodal is present in human metastatic tumors, but not in normal skin, and thus may be involved in melanoma pathogenesis. Inhibition of Nodal signaling reduces melanoma cell invasiveness, colony formation and tumorigenicity. Nodal inhibition also promotes the reversion of melanoma cells toward a melanocytic phenotype. These data suggest that Nodal signaling has a key role in melanoma cell plasticity and tumorigenicity, thereby providing a previously unknown molecular target for regulating tumor progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Melanoma cells induce ectopic body axis formation in zebrafish embryos.
Figure 2: Aggressive C8161-GFP melanoma cells induce ectopic gene expression in zebrafish embryos.
Figure 3: Aggressive melanoma expresses Nodal.
Figure 4: Patterns of Nodal expression in primary and metastatic melanoma lesions.
Figure 5: Nodal signaling promotes an aggressive melanoma phenotype.
Figure 6: Nodal inhibition abrogates melanoma tumorigenicity.

Similar content being viewed by others

References

  1. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).

    CAS  PubMed  Google Scholar 

  2. Hendrix, M.J., Seftor, E.A., Hess, A.R. & Seftor, R.E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer 3, 411–421 (2003).

    CAS  PubMed  Google Scholar 

  3. Pierce, G.B., Pantazis, C.G., Caldwell, J.E. & Wells, R.S. Specificity of the control of tumor formation by the blastocyst. Cancer Res. 42, 1082–1087 (1982).

    CAS  PubMed  Google Scholar 

  4. Gerschenson, M., Graves, K., Carson, S.D., Wells, R.S. & Pierce, G.B. Regulation of melanoma by the embryonic skin. Proc. Natl. Acad. Sci. USA 83, 7307–7310 (1986).

    CAS  PubMed  Google Scholar 

  5. Lee, L.M., Seftor, E.A., Bonde, G., Cornell, R.A. & Hendrix, M.J. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev. Dyn. 233, 1560–1570 (2005).

    CAS  PubMed  Google Scholar 

  6. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 72, 3585–3589 (1975).

    CAS  PubMed  Google Scholar 

  7. Topczewska, J.M. et al. The winged helix transcription factor Foxc1a is essential for somitogenesis in zebrafish. Genes Dev. 15, 2483–2493 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. De Robertis, E.M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1, 171–181 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Niehrs, C. Regionally specific induction by the Spemann-Mangold organizer. Nat. Rev. Genet. 5, 425–434 (2004).

    CAS  PubMed  Google Scholar 

  10. Hatta, K. & Takahashi, Y. Secondary axis induction by heterospecific organizers in zebrafish. Dev. Dyn. 205, 183–195 (1996).

    CAS  PubMed  Google Scholar 

  11. Gritsman, K., Talbot, W.S. & Schier, A.F. Nodal signaling patterns the organizer. Development 127, 921–932 (2000).

    CAS  PubMed  Google Scholar 

  12. Whitman, M. Nodal signaling in early vertebrate embryos: themes and variations. Dev. Cell 1, 605–617 (2001).

    CAS  PubMed  Google Scholar 

  13. Schier, A.F. Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol. 19, 589–621 (2003).

    CAS  PubMed  Google Scholar 

  14. Iannaccone, P.M., Zhou, X., Khokha, M., Boucher, D. & Kuehn, M.R. Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev. Dyn. 194, 198–208 (1992).

    CAS  PubMed  Google Scholar 

  15. Smith, J.C. Mesoderm-inducing factors and mesodermal patterning. Curr. Opin. Cell Biol. 7, 856–861 (1995).

    CAS  PubMed  Google Scholar 

  16. Zhou, X., Sasaki, H., Lowe, L., Hogan, B.L. & Kuehn, M.R. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 (1993).

    CAS  PubMed  Google Scholar 

  17. Rebagliati, M.R., Toyama, R., Haffter, P. & Dawid, I.B. Cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl. Acad. Sci. USA 95, 9932–9937 (1998).

    CAS  PubMed  Google Scholar 

  18. Toyama, R., O'Connell, M.L., Wright, C.V., Kuehn, M.R. & Dawid, I.B. Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development 121, 383–391 (1995).

    CAS  PubMed  Google Scholar 

  19. Halpern, M.E. et al. Genetic interactions in zebrafish midline development. Dev. Biol. 187, 154–170 (1997).

    CAS  PubMed  Google Scholar 

  20. Chen, Y. & Schier, A.F. The zebrafish Nodal signal Squint functions as a morphogen. Nature 411, 607–610 (2001).

    CAS  PubMed  Google Scholar 

  21. Cheng, S.K., Olale, F., Brivanlou, A.H. & Schier, A.F. Lefty blocks a subset of TGFβ signals by antagonizing EGF-CFC coreceptors. PLoS Biol. 2, 0215–0226 (2004).

    CAS  Google Scholar 

  22. Chen, C. & Shen, M.M. Two modes by which Lefty proteins inhibit nodal signaling. Curr. Biol. 14, 618–624 (2004).

    CAS  PubMed  Google Scholar 

  23. Branford, W.W. & Yost, H.J. Nodal signaling: CrypticLefty mechanism of antagonism decoded. Curr. Biol. 14, R341–R343 (2004).

    CAS  PubMed  Google Scholar 

  24. Besser, D. Expression of nodal, lefty-a, and lefty-b in undifferentiated human embryonic stem cells requires activation of Smad2/3. J. Biol. Chem. 279, 45076–45084 (2004).

    CAS  PubMed  Google Scholar 

  25. Hendrix, M.J. et al. Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential. J. Natl. Cancer Inst. 84, 165–174 (1992).

    CAS  PubMed  Google Scholar 

  26. Hendrix, M.J., Seftor, E.A., Hess, A.R. & Seftor, R.E. Molecular plasticity of human melanoma cells. Oncogene 22, 3070–3075 (2003).

    CAS  PubMed  Google Scholar 

  27. James, D., Levine, A.J., Besser, D. & Hemmati-Brivanlou, A. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–1282 (2005).

    CAS  PubMed  Google Scholar 

  28. Vallier, L., Reynolds, D. & Pedersen, R.A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403–421 (2004).

    CAS  PubMed  Google Scholar 

  29. Vallier, L., Alexander, M. & Pedersen, R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495–4509 (2005).

    CAS  PubMed  Google Scholar 

  30. Hendrix, M.J., Seftor, E.A., Kirschmann, D.A., Quaranta, V. & Seftor, R.E. Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann. NY Acad. Sci. 995, 151–161 (2003).

    CAS  PubMed  Google Scholar 

  31. Seftor, E.A. et al. Epigenetic transformation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Res. 65, 10164–10169 (2005).

    CAS  PubMed  Google Scholar 

  32. Chu, Y.W., Seftor, E.A., Romer, L.H. & Hendrix, M.J. Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Am. J. Pathol. 148, 63–69 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hendrix, M.J. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl. Acad. Sci. USA 98, 8018–8023 (2001).

    CAS  PubMed  Google Scholar 

  34. Takeuchi, H., Kuo, C., Morton, D.L., Wang, H.J. & Hoon, D.S. Expression of differentiation melanoma-associated antigen genes is associated with favorable disease outcome in advanced-stage melanomas. Cancer Res. 63, 441–448 (2003).

    CAS  PubMed  Google Scholar 

  35. Martinez-Esparza, M., Solano, F. & Garcia-Borron, J.C. Independent regulation of tyrosinase by the hypopigmenting cytokines TGF β1 and TNF α and the melanogenic hormone α-MSH in B16 mouse melanocytes. Cell. Mol. Biol. 45, 991–1000 (1999).

    CAS  PubMed  Google Scholar 

  36. Kim, D.S., Park, S.H. & Park, K.C. Transforming growth factor-β1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. Int. J. Biochem. Cell Biol. 36, 1482–1491 (2004).

    CAS  PubMed  Google Scholar 

  37. Nawshad, A., Lagamba, D., Polad, A. & Hay, E.D. Transforming growth factor-β signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 179, 11–23 (2005).

    CAS  PubMed  Google Scholar 

  38. Javelaud, D. et al. Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene 24, 7624–7629 (2005).

    CAS  PubMed  Google Scholar 

  39. Juhasz, I. et al. Growth and invasion of human melanomas in human skin grafted to immunodeficient mice. Am. J. Pathol. 143, 528–537 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Adkins, H.B. et al. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J. Clin. Invest. 112, 575–587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    CAS  Google Scholar 

  42. Fang, D. et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65, 9328–9337 (2005).

    CAS  PubMed  Google Scholar 

  43. Hendrix, M.J. et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res. 62, 665–668 (2002).

    CAS  PubMed  Google Scholar 

  44. Welch, D.R. et al. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int. J. Cancer 47, 227–237 (1991).

    CAS  PubMed  Google Scholar 

  45. Seftor, E.A. et al. Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit. Rev. Oncol. Hematol. 44, 17–27 (2002).

    PubMed  Google Scholar 

  46. Solnica-Krezel, L., Schier, A.F. & Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Thisse, C., Thisse, B., Schilling, T.F. & Postlethwait, J.H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215 (1993).

    CAS  PubMed  Google Scholar 

  48. Hess, A.R. et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res. 61, 3250–3255 (2001).

    CAS  PubMed  Google Scholar 

  49. Hendrix, M.J., Seftor, E.A., Seftor, R.E. & Fidler, I.J. A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett. 38, 137–147 (1987).

    CAS  PubMed  Google Scholar 

  50. Maniotis, A.J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with D. Constam and the input of L. Lee, E. Seftor and R. Seftor. This work was supported in part by US National Institutes of Health (NIH) grants (CA59702 and CA80318), an Illinois Regenerative Medicine Institute grant and a Charlotte Geyer Foundation grant to M.J.C.H.; an Excellence in Academic Medicine grant (FY05EAM) to J.M.T.; Mazza Foundation grants to J.M.T. and M.J.C.H.; NIH grants (CA59327 and CA27502) to B.J.N.; and a Canadian Institutes of Health Research postdoctoral fellowship to L.M.P.

Author information

Authors and Affiliations

Authors

Contributions

J.M.T. carried out the transplantations and RNA injections into zebrafish embryos, whole-mount immunohistochemistry, and confocal and conventional imaging. L.-M.P. did the cell culture, adenoviral transfections, morpholino treatments, cell sorting, clonogenic assays, vasculogenic mimicry assays, mouse studies and western blotting. N.V.M. carried out the immunohistochemical tissue staining in conjunction with B.J.N. and L.-M.P., and did the mouse studies with L.M.P. A.S. carried out fish care and in situ hybridization, and A.R.H. completed the invasion assays. L.-M.P. and J.M.T. wrote the paper, and all authors discussed the results and commented on the manuscript. The project was conceived and orchestrated by M.J.C.H.

Note: Supplementary information is available on the Nature Medicine website.

Corresponding author

Correspondence to Mary J C Hendrix.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic representation of melanoma cell transplantation experiments. (PDF 529 kb)

Supplementary Fig. 2

The overexpression of the lefty1 inhibits secondary axis formation induced by transplanted aggressive C8161 melanoma cells. (PDF 2537 kb)

Supplementary Fig. 3

Patterns of Nodal expression in primary and metastatic cutaneous melanoma and breast carcinoma cell lines. (PDF 433 kb)

Supplementary Fig. 4

Nodal-mediated signaling and gene regulation in melanoma cells. (PDF 103 kb)

Supplementary Fig. 5

TUNEL assay of melanoma cells treated with MONodal or SB431542. (PDF 685 kb)

Supplementary Note (PDF 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topczewska, J., Postovit, LM., Margaryan, N. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12, 925–932 (2006). https://doi.org/10.1038/nm1448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing