Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection

Abstract

The urinary tract functions in close proximity to the outside environment, yet must remain free of microbial colonization to avoid disease. The mechanisms for establishing an antimicrobial barrier in this area are not completely understood. Here, we describe the production and function of the cathelicidin antimicrobial peptides LL-37, its precursor hCAP-18 and its ortholog CRAMP in epithelial cells of human and mouse urinary tract, respectively. Bacterial contact with epithelial cells resulted in rapid production and secretion of the respective peptides, and in humans LL-37/hCAP-18 was released into urine. Epithelium-derived cathelicidin substantially contributed to the protection of the urinary tract against infection, as shown using CRAMP-deficient and neutrophil-depleted mice. In addition, clinical E. coli strains that were more resistant to LL-37 caused more severe urinary tract infections than did susceptible strains. Thus, cathelicidin seems to be a key factor in mucosal immunity of the urinary tract.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunohistochemical staining of sections from healthy human renal cortical tissue (ad), a piece of human renal cortex incubated in cell culture medium for 24 h (e,f), and a piece infected with uropathogenic E. coli for the same time (g,h).
Figure 2: Cathelicidin LL-37/hCAP-18 in vitro.
Figure 3: Immunofluorescent staining of two sections (one section is shown in ad and the other is shown in eh) from the renal cortex of a NMRI mouse at 24 h of pyelonephritis.
Figure 4: Relevance of epithelium-derived cathelicidin for the protection of the urinary tract against infection.
Figure 5: The course of experimental urinary tract infection in CRAMP-producing Camp+/+ and CRAMP-deficient Camp−/− mice.
Figure 6: Sensitivity of uropathogenic E. coli to synthetic LL-37 peptide expressed as a minimal inhibitory concentration (MIC) of LL-37.

Similar content being viewed by others

References

  1. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  Google Scholar 

  2. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  Google Scholar 

  3. Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75, 39–48 (2004).

    Article  Google Scholar 

  4. Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001).

    Article  CAS  Google Scholar 

  5. Moser, C. et al. β-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70, 3068–3072 (2002).

    Article  CAS  Google Scholar 

  6. Valore, E.V. et al. Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. 101, 1633–1642 (1998).

    Article  CAS  Google Scholar 

  7. Morrison, G., Kilanowski, F., Davidson, D. & Dorin, J. Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect. Immun. 70, 3053–3060 (2002).

    Article  CAS  Google Scholar 

  8. Zucht, H.D. et al. Human β-defensin-1: A urinary peptide present in variant molecular forms and its putative functional implication. Eur. J. Med. Res. 3, 315–323 (1998).

    CAS  PubMed  Google Scholar 

  9. Zaiou, M. & Gallo, R.L. Cathelicidins, essential gene-encoded mammalian antibiotics. J. Mol. Med. 80, 549–561 (2002).

    Article  CAS  Google Scholar 

  10. Tollin, M. et al. Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 24, 523–530 (2003).

    Article  CAS  Google Scholar 

  11. Agerberth, B. et al. Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am. J. Respir. Crit. Care Med. 160, 283–290 (1999).

    Article  CAS  Google Scholar 

  12. Gudmundsson, G.H. et al. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 238, 325–332 (1996).

    Article  CAS  Google Scholar 

  13. Malm, J. et al. The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect. Immun. 68, 4297–4302 (2000).

    Article  CAS  Google Scholar 

  14. Gallo, R.L. et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 272, 13088–13093 (1997).

    Article  CAS  Google Scholar 

  15. Sorensen, O.E. et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97, 3951–3959 (2001).

    Article  CAS  Google Scholar 

  16. Zaiou, M., Nizet, V. & Gallo, R.L. Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J. Invest. Dermatol. 120, 810–816 (2003).

    Article  CAS  Google Scholar 

  17. Pestonjamasp, V.K., Huttner, K.H. & Gallo, R.L. Processing site and gene structure for the murine antimicrobial peptide CRAMP. Peptides 22, 1643–1650 (2001).

    Article  CAS  Google Scholar 

  18. Brogden, K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250 (2005).

    Article  CAS  Google Scholar 

  19. Scott, M.G., Davidson, D.J., Gold, M.R., Bowdish, D. & Hancock, R.E. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 169, 3883–3891 (2002).

    Article  CAS  Google Scholar 

  20. Yang, D., Biragyn, A., Kwak, L.W. & Oppenheim, J.J. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291–296 (2002).

    Article  CAS  Google Scholar 

  21. Bowdish, D.M., Davidson, D.J. & Hancock, R.E. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr. Protein Pept. Sci. 6, 35–51 (2005).

    Article  CAS  Google Scholar 

  22. Turner, J., Cho, Y., Dinh, N.N., Waring, A.J. & Lehrer, R.I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 42, 2206–2214 (1998).

    Article  CAS  Google Scholar 

  23. Faurschou, M. & Borregaard, N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 5, 1317–1327 (2003).

    Article  CAS  Google Scholar 

  24. Hase, K., Eckmann, L., Leopard, J.D., Varki, N. & Kagnoff, M.F. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect. Immun. 70, 953–963 (2002).

    Article  CAS  Google Scholar 

  25. Norden, C.W., Green, G.M. & Kass, E.H. Antibacterial mechanisms of the urinary bladder. J. Clin. Invest. 47, 2689–2700 (1968).

    Article  CAS  Google Scholar 

  26. Justice, S.S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl. Acad. Sci. USA 101, 1333–1338 (2004).

    Article  CAS  Google Scholar 

  27. Gordon, D.M. & Riley, M.A. A theoretical and experimental analysis of bacterial growth in the bladder. Mol. Microbiol. 6, 555–562 (1992).

    Article  CAS  Google Scholar 

  28. Cox, C.E. & Hinman, F., Jr. Experiments with induced bacteriuria, vesical emptying and bacterial growth on the mechanism of bladder defense to infection. J. Urol. 86, 739–748 (1961).

    Article  CAS  Google Scholar 

  29. Mulvey, M.A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    Article  CAS  Google Scholar 

  30. Bates, J.M. et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int. 65, 791–797 (2004).

    Article  CAS  Google Scholar 

  31. Fliedner, M., Mehls, O., Rauterberg, E.W. & Ritz, E. Urinary sIgA in children with urinary tract infection. J. Pediatr. 109, 416–421 (1986).

    Article  CAS  Google Scholar 

  32. Abrink, M., Larsson, E., Gobl, A. & Hellman, L. Expression of lactoferrin in the kidney: implications for innate immunity and iron metabolism. Kidney Int. 57, 2004–2010 (2000).

    Article  CAS  Google Scholar 

  33. Islam, D. et al. Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med. 7, 180–185 (2001).

    Article  CAS  Google Scholar 

  34. Bergman, P. et al. Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cell. Microbiol. 7, 1009–1017 (2005).

    Article  CAS  Google Scholar 

  35. Johansson, J., Gudmundsson, G.H., Rottenberg, M.E., Berndt, K.D. & Agerberth, B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem. 273, 3718–3724 (1998).

    Article  CAS  Google Scholar 

  36. Sorensen, O., Arnljots, K., Cowland, J.B., Bainton, D.F. & Borregaard, N. The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 90, 2796–2803 (1997).

    CAS  PubMed  Google Scholar 

  37. Dorschner, R.A. et al. The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J. 20, 35–42 (2006).

    Article  CAS  Google Scholar 

  38. Yan, H. & Hancock, R.E. Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob. Agents Chemother. 45, 1558–1560 (2001).

    Article  CAS  Google Scholar 

  39. Braff, M.H., Zaiou, M., Fierer, J., Nizet, V. & Gallo, R.L. Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect. Immun. 73, 6771–6781 (2005).

    Article  CAS  Google Scholar 

  40. Yoshio, H. et al. Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr. Res. 53, 211–216 (2003).

    Article  CAS  Google Scholar 

  41. Todd, J.H., McMartin, K.E. & Sens, D.A. Enzymatic isolation and serum-free culture of human renal cells. in Human cell culture protocols (ed. Jones, G.E.) 431–436 (Humana Press, Totowa, 1996).

    Chapter  Google Scholar 

  42. Rossi, M.R. et al. The immortalized UROtsa cell line as a potential cell culture model of human urothelium. Environ. Health Perspect. 109, 801–808 (2001).

    Article  CAS  Google Scholar 

  43. Khalil, A. et al. Cytokine gene expression during experimental Escherichia coli pyelonephritis in mice. J. Urol. 158, 1576–1580 (1997).

    Article  CAS  Google Scholar 

  44. Chromek, M. et al. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 in acute pyelonephritis and renal scarring. Pediatr. Res. 53, 698–705 (2003).

    Article  CAS  Google Scholar 

  45. Black, C.A. et al. Acute neutropenia decreases inflammation associated with murine vaginal candidiasis but has no effect on the course of infection. Infect. Immun. 66, 1273–1275 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Z. Fehervízyová and T. Baltesová for help collecting urine samples, M. Lindh for technical assistance and G. Kronvall for help with single-strain regression analysis. This work was supported by ALF Project Funding, The Swedish Society of Medicine, The Swedish Association of Kidney Patients, funds from the Karolinska Institute, Magn. Bergvalls Foundation, Capio Foundation, The Swedish Research Council (04X-2887, 06X-11217), The Swedish Foundation for International Cooperation in Research and Higher Education (STINT), and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelie Brauner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

LL-37/hCAP-18 levels in urine of 28 healthy children and in 29 children with acute urinary tract infection. (PDF 77 kb)

Supplementary Fig. 2

Human LL-37/hCAP-18 mRNA and protein levels in noninfected renal and uroepithelial cells and tissues. (PDF 27 kb)

Supplementary Methods (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chromek, M., Slamová, Z., Bergman, P. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12, 636–641 (2006). https://doi.org/10.1038/nm1407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1407

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing