Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin-10 determines viral clearance or persistence in vivo

Abstract

Persistent viral infections are a major health concern. One obstacle inhibiting the clearance of persistent infections is functional inactivation of antiviral T cells. Although such immunosuppression occurs rapidly after infection, the mechanisms that induce the loss of T-cell activity and promote viral persistence are unknown. Herein we document that persistent viral infection in mice results in a significant upregulation of interleukin (IL)-10 by antigen-presenting cells, leading to impaired T-cell responses. Genetic removal of Il10 resulted in the maintenance of robust effector T-cell responses, the rapid elimination of virus and the development of antiviral memory T-cell responses. Therapeutic administration of an antibody that blocks the IL-10 receptor restored T-cell function and eliminated viral infection. Thus, we identify a single molecule that directly induces immunosuppression leading to viral persistence and demonstrate that a therapy to neutralize IL-10 results in T-cell recovery and the prevention of viral persistence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased IL-10 production during persistent viral infection.
Figure 2: Increased levels of virus-specific T cells after Cl 13 infection of IL-10–deficient mice.
Figure 3: Sustained effector T cell responses in the absence of IL-10.
Figure 4: Increased IL-10 potentiates viral persistence.
Figure 5: Rapid clearance of persistent viral infection facilitates memory T-cell development.
Figure 6: Treatment with antibody to IL-10R to prevent or treat persistent viral infection.

Similar content being viewed by others

References

  1. Brooks, D.G., Teyton, L., Oldstone, M.B. & McGavern, D.B. Intrinsic functional dysregulation of CD4 T cells occurs rapidly following persistent viral infection. J. Virol. 79, 10514–10527 (2005).

    Article  CAS  Google Scholar 

  2. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  CAS  Google Scholar 

  3. Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499–1512 (2000).

    Article  CAS  Google Scholar 

  4. Rosenberg, E.S. et al. Immune control of HIV-1 after early treatment of acute infection. Nature 407, 523–526 (2000).

    CAS  PubMed  Google Scholar 

  5. Thimme, R. et al. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J. Exp. Med. 194, 1395–1406 (2001).

    Article  CAS  Google Scholar 

  6. Zajac, A.J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  Google Scholar 

  7. Ou, R., Zhou, S., Huang, L. & Moskophidis, D. Critical role for alpha/beta and gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J. Virol. 75, 8407–8423 (2001).

    Article  CAS  Google Scholar 

  8. van der Most, R.G. et al. Identification of Db- and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice. Virology 240, 158–167 (1998).

    Article  CAS  Google Scholar 

  9. Wherry, E.J., Blattman, J.N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    Article  CAS  Google Scholar 

  10. Klenerman, P. & Hill, A. T cells and viral persistence: lessons from diverse infections. Nat. Immunol. 6, 873–879 (2005).

    Article  CAS  Google Scholar 

  11. Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2005).

    Article  Google Scholar 

  12. Borrow, P. & Oldstone, M.B. Lymphocytic choriomeningitis virus. In Viral Pathogenesis (ed. Nathanson, N.) 593–627 (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  13. Ahmed, R., Salmi, A., Butler, L.D., Chiller, J.M. & Oldstone, M.B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160, 521–540 (1984).

    Article  CAS  Google Scholar 

  14. Borrow, P., Evans, C.F. & Oldstone, M.B. Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J. Virol. 69, 1059–1070 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Salvato, M., Borrow, P., Shimomaye, E. & Oldstone, M.B. Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J. Virol. 65, 1863–1869 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sevilla, N. et al. Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J. Exp. Med. 192, 1249–1260 (2000).

    Article  CAS  Google Scholar 

  17. Fuller, M.J., Khanolkar, A., Tebo, A.E. & Zajac, A.J. Maintenance, loss, and resurgence of T cell responses during acute, protracted, and chronic viral infections. J. Immunol. 172, 4204–4214 (2004).

    Article  CAS  Google Scholar 

  18. Fiorentino, D.F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146, 3444–3451 (1991).

    CAS  PubMed  Google Scholar 

  19. Groux, H., Bigler, M., de Vries, J.E. & Roncarolo, M.G. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J. Exp. Med. 184, 19–29 (1996).

    Article  CAS  Google Scholar 

  20. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  Google Scholar 

  21. Clerici, M. et al. Human immunodeficiency virus (HIV) phenotype and interleukin-2/ interleukin-10 ratio are associated markers of protection and progression in HIV infection. Blood 88, 574–579 (1996).

    CAS  PubMed  Google Scholar 

  22. Orsilles, M.A., Pieri, E., Cooke, P. & Caula, C. IL-2 and IL-10 serum levels in HIV-1-infected patients with or without active antiretroviral therapy. APMIS 114, 55–60 (2006).

    Article  CAS  Google Scholar 

  23. Cacciarelli, T.V., Martinez, O.M., Gish, R.G., Villanueva, J.C. & Krams, S.M. Immunoregulatory cytokines in chronic hepatitis C virus infection: pre- and posttreatment with interferon alfa. Hepatology 24, 6–9 (1996).

    Article  CAS  Google Scholar 

  24. Brady, M.T., MacDonald, A.J., Rowan, A.G. & Mills, K.H. Hepatitis C virus non-structural protein 4 suppresses Th1 responses by stimulating IL-10 production from monocytes. Eur. J. Immunol. 33, 3448–3457 (2003).

    Article  CAS  Google Scholar 

  25. Dolganiuc, A. et al. Hepatitis C virus core and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J. Immunol. 170, 5615–5624 (2003).

    Article  CAS  Google Scholar 

  26. Marin-Serrano, E., Rodriguez-Ramos, C., Diaz, F., Martin-Herrera, L. & Giron-Gonzalez, J.A. Modulation of the anti-inflammatory interleukin 10 and of proapoptotic IL-18 in patients with chronic hepatitis C treated with interferon alpha and ribavirin. J. Viral Hepat. 13, 230–234 (2006).

    Article  CAS  Google Scholar 

  27. Rico, M.A. et al. Hepatitis B virus-specific T-cell proliferation and cytokine secretion in chronic hepatitis B e antibody-positive patients treated with ribavirin and interferon alpha. Hepatology 33, 295–300 (2001).

    Article  CAS  Google Scholar 

  28. Clerici, M. et al. Role of interleukin-10 in T helper cell dysfunction in asymptomatic individuals infected with the human immunodeficiency virus. J. Clin. Invest. 93, 768–775 (1994).

    Article  CAS  Google Scholar 

  29. Landay, A.L. et al. In vitro restoration of T cell immune function in human immunodeficiency virus-positive persons: effects of interleukin (IL)-12 and anti-IL-10. J. Infect. Dis. 173, 1085–1091 (1996).

    Article  CAS  Google Scholar 

  30. Rigopoulou, E.I., Abbott, W.G., Haigh, P. & Naoumov, N.V. Blocking of interleukin-10 receptor–a novel approach to stimulate T-helper cell type 1 responses to hepatitis C virus. Clin. Immunol. 117, 57–64 (2005).

    Article  CAS  Google Scholar 

  31. Lin, M.T., Hinton, D.R., Parra, B., Stohlman, S.A. & van der Veen, R.C. The role of IL-10 in mouse hepatitis virus-induced demyelinating encephalomyelitis. Virology 245, 270–280 (1998).

    Article  CAS  Google Scholar 

  32. Strestik, B.D., Olbrich, A.R., Hasenkrug, K.J. & Dittmer, U. The role of IL-5, IL-6 and IL-10 in primary and vaccine-primed immune responses to infection with Friend retrovirus (Murine leukaemia virus). J. Gen. Virol. 82, 1349–1354 (2001).

    Article  CAS  Google Scholar 

  33. Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  Google Scholar 

  34. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8 + T cells leads to reversible immune dysfunction. Nat. Med. advance online publication, 20 August 2006 (doi:10.1038/nm1482).

  35. Carbonneil, C., Donkova-Petrini, V., Aouba, A. & Weiss, L. Defective dendritic cell function in HIV-infected patients receiving effective highly active antiretroviral therapy: neutralization of IL-10 production and depletion of CD4+CD25+ T cells restore high levels of HIV-specific CD4+ T cell responses induced by dendritic cells generated in the presence of IFN–α. J. Immunol. 172, 7832–7840 (2004).

    Article  CAS  Google Scholar 

  36. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F.P. & Steinman, R.M. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc. Natl. Acad. Sci. USA 101, 7669–7674 (2004).

    Article  CAS  Google Scholar 

  37. Ji, J., Sahu, G.K., Braciale, V.L. & Cloyd, M.W. HIV-1 induces IL-10 production in human monocytes via a CD4-independent pathway. Int. Immunol. 17, 729–736 (2005).

    Article  CAS  Google Scholar 

  38. Kinter, A.L. et al. CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J. Exp. Med. 200, 331–343 (2004).

    Article  CAS  Google Scholar 

  39. Lechmann, M. et al. Decreased frequency of HCV core-specific peripheral blood mononuclear cells with type 1 cytokine secretion in chronic hepatitis C. J. Hepatol. 31, 971–978 (1999).

    Article  CAS  Google Scholar 

  40. Ostrowski, M.A. et al. Quantitative and qualitative assessment of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cell immunity to gag in HIV-1-infected individuals with differential disease progression: reciprocal interferon-γ and interleukin-10 responses. J. Infect. Dis. 184, 1268–1278 (2001).

    Article  CAS  Google Scholar 

  41. Tsai, S.L., Liaw, Y.F., Chen, M.H., Huang, C.Y. & Kuo, G.C. Detection of type 2-like T-helper cells in hepatitis C virus infection: implications for hepatitis C virus chronicity. Hepatology 25, 449–458 (1997).

    Article  CAS  Google Scholar 

  42. Battegay, M. et al. Enhanced establishment of a virus carrier state in adult CD4+ T-cell-deficient mice. J. Virol. 68, 4700–4704 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Matloubian, M., Concepcion, R.J. & Ahmed, R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol. 68, 8056–8063 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tishon, A., Lewicki, H., Rall, G., Von Herrath, M. & Oldstone, M.B. An essential role for type 1 interferon-γ in terminating persistent viral infection. Virology 212, 244–250 (1995).

    Article  CAS  Google Scholar 

  45. Brooks, D.G., McGavern, D.B. & Oldstone, M.B. Reprogramming of antiviral T cells prevents inactivation and restores T cell activity during persistent viral infection. J. Clin. Invest. 116, 1675–1685 (2006).

    Article  CAS  Google Scholar 

  46. Accapezzato, D. et al. Hepatic expansion of a virus-specific regulatory CD8+ T cell population in chronic hepatitis C virus infection. J. Clin. Invest. 113, 963–972 (2004).

    Article  CAS  Google Scholar 

  47. Homann, D., Teyton, L. & Oldstone, M.B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat. Med. 7, 913–919 (2001).

    Article  CAS  Google Scholar 

  48. Zuniga, E.I., McGavern, D.B., Pruneda-Paz, J.L., Teng, C. & Oldstone, M.B. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat. Immunol. 5, 1227–1234 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Lewicki, D. Young and J. Wheatley for technical assistance and F. Chisari for analysis of sALT levels. Independent findings of IL-10R blockade controlling persistent infection were also found by Ejrneas et al. (JEM, in press). Our work was supported by NIH training grant AI07244-22 (D.G.B.), NIH grants AI09484, AI45927 (M.B.A.O.), AI062718-01 (D.B.M.), NS048866-01 (D.B.M.) and a Dana Foundation grant (D.B.M.). This is publication number 18209-MIND from the Viral Immunobiology Laboratory, Department of Molecular and Integrative Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G Brooks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Increased IL-10 production by CD4 T cells early during Cl 13 infection. (PDF 275 kb)

Supplementary Fig. 2

Expression of IL-10 receptor during LCMV infection. (PDF 307 kb)

Supplementary Fig. 3

PD-1 and Foxp3 expression by T cells during LCMV infection. (PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, D., Trifilo, M., Edelmann, K. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 12, 1301–1309 (2006). https://doi.org/10.1038/nm1492

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1492

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing