Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Smallpox vaccine–induced antibodies are necessary and sufficient for protection against monkeypox virus

Abstract

Vaccination with live vaccinia virus affords long-lasting protection against variola virus, the agent of smallpox. Its mode of protection in humans, however, has not been clearly defined. Here we report that vaccinia-specific B-cell responses are essential for protection of macaques from monkeypox virus, a variola virus ortholog. Antibody-mediated depletion of B cells, but not CD4+ or CD8+ T cells, abrogated vaccine-induced protection from a lethal intravenous challenge with monkeypox virus. In addition, passive transfer of human vaccinia-neutralizing antibodies protected nonimmunized macaques from severe disease. Thus, vaccines able to induce long-lasting protective antibody responses may constitute realistic alternatives to the currently available smallpox vaccine (Dryvax).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of B cells and CD8+ T lymphocytes in rhesus macaques.
Figure 2: Humoral immune response in the treated macaques.
Figure 3: Vaccinia antibodies and CD4+ T cells in protection from monkeypox virus.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bray, M. & Buller, M. Looking back at smallpox. Clin. Infect. Dis. 38, 882–889 (2004).

    Article  Google Scholar 

  2. Fenner, F., Henderson, D.A., Arita, I., Jezek, Z. & Ladnyi, I. Smallpox and its eradication (World Health Organization, Geneva, 1988).

    Google Scholar 

  3. Bray, M. & Wright, M.E. Progressive vaccinia. Clin. Infect. Dis. 36, 766–774 (2003).

    Article  Google Scholar 

  4. Kemper, A.R., Davis, M.M. & Freed, G.L. Expected adverse events in a mass smallpox vaccination campaign. Eff. Clin. Pract. 5, 84–90 (2002).

    PubMed  Google Scholar 

  5. Henderson, D.A. et al. Smallpox as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. J. Am. Med. Assoc. 281, 2127–2137 (1999).

    Article  CAS  Google Scholar 

  6. Earl, P.L. et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428, 182–185 (2004).

    Article  CAS  Google Scholar 

  7. Hooper, J.W. et al. Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J. Virol. 78, 4433–4443 (2004).

    Article  CAS  Google Scholar 

  8. Weltzin, R. et al. Clonal vaccinia virus grown in cell culture as a new smallpox vaccine. Nat. Med. 9, 1125–1130 (2003).

    Article  CAS  Google Scholar 

  9. Zaucha, G.M., Jahrling, P.B., Geisbert, T.W., Swearengen, J.R. & Hensley, L. The pathology of experimental aerosolized monkeypox virus infection in cynomolgus monkeys (Macaca fascicularis). Lab. Invest. 81, 1581–1600 (2001).

    Article  CAS  Google Scholar 

  10. Edghill-Smith, Y. et al. Modeling a safer smallpox vaccination regimen, for human immunodeficiency virus type 1-infected patients, in immunocompromised macaques. J. Infect. Dis. 188, 1181–1191 (2003).

    Article  Google Scholar 

  11. Schmitz, J.E. et al. A nonhuman primate model for the selective elimination of CD8+ lymphocytes using a mouse-human chimeric monoclonal antibody. Am. J. Pathol. 154, 1923–1932 (1999).

    Article  CAS  Google Scholar 

  12. Reff, M.E. et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83, 435–445 (1994).

    CAS  PubMed  Google Scholar 

  13. Schmitz, J.E. et al. Effect of humoral immune responses on controlling viremia during primary infection of rhesus monkeys with simian immunodeficiency virus. J. Virol. 77, 2165–2173 (2003).

    Article  CAS  Google Scholar 

  14. Manischewitz, J. et al. Development of a novel vaccinia-neutralization assay based on reporter-gene expression. J. Infect. Dis. 188, 440–448 (2003).

    Article  Google Scholar 

  15. Kulesh, D.A. et al. Smallpox and pan-orthopox virus detection by real-time 3′-minor groove binder TaqMan assays on the Roche LightCycler and the Cepheid Smart Cycler platforms. J. Clin. Microbiol. 42, 601–609 (2004).

    Article  CAS  Google Scholar 

  16. Mourad, G.J. et al. Humanized IgG1 and IgG4 anti-CD4 monoclonal antibodies: effects on lymphocytes in the blood, lymph nodes, and renal allografts in cynomolgus monkeys. Transplantation 65, 632–641 (1998).

    Article  CAS  Google Scholar 

  17. Mack, T.M., Noble, J., Jr & Thomas, D.B. A prospective study of serum antibody and protection against smallpox. Am. J. Trop. Med. Hyg. 21, 214–218 (1972).

    Article  CAS  Google Scholar 

  18. Sarkar, J.K., Mitra, A.C. & Mukherjee, M.K. The minimum protective level of antibodies in smallpox. Bull. World Health Organ. 52, 307–311 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Edghill-Smith, Y. et al. Smallpox vaccine does not protect macaques with AIDS from a lethal monkeypox virus challenge. J. Infect. Dis. 191, 372–381 (2005).

    Article  CAS  Google Scholar 

  20. Wyatt, L.S., Earl, P.L., Eller, L.A. & Moss, B. Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc. Natl Acad. Sci. USA 101, 4590–4595 (2004).

    Article  CAS  Google Scholar 

  21. Belyakov, I.M. et al. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc. Natl Acad. Sci. USA 100, 9458–9463 (2003).

    Article  CAS  Google Scholar 

  22. Salk, J. & Salk, D. Control of influenza and poliomyelitis with killed virus vaccines. Science 195, 834–847 (1977).

    Article  CAS  Google Scholar 

  23. Duncan, S.A. & Smith, G.L. Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J. Virol. 66, 1610–1621 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Engelstad, M., Howard, S.T. & Smith, G.L. A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188, 801–810 (1992).

    Article  CAS  Google Scholar 

  25. Hirt, P., Hiller, G. & Wittek, R. Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J. Virol. 58, 757–764 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Isaacs, S.N., Wolffe, E.J., Payne, L.G. & Moss, B. Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J. Virol. 66, 7217–7224 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Roper, R.L., Payne, L.G. & Moss, B. Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol. 70, 3753–3762 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Centers for Disease Control and Prevention. Multistate outbreak of monkeypox–Illinois, Indiana, and Wisconsin, 2003. Morb. Mortal. Wkly. Rep. 52, 537–540 (2003).

  29. Centers for Disease Control and Prevention. Update: multistate outbreak of monkeypox–Illinois, Indiana, Kansas, Missouri, Ohio, and Wisconsin, 2003. Morb. Mortal. Wkly. Rep. 52, 642–646 (2003).

  30. Ladnyi, I.D., Ziegler, P. & Kima, E. A human infection caused by monkey pox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 55, 613–623 (1972).

    Google Scholar 

  31. Marennikova, S.S. et al. Monkey pox in humans: current results. Acta Virol. 33, 246–253 (1989).

    CAS  PubMed  Google Scholar 

  32. Tartaglia, J. et al. NYVAC: a highly attenuated strain of vaccinia virus. Virology 188, 217–232 (1992).

    Article  CAS  Google Scholar 

  33. Moss, B. et al. Host range restricted, non-replicating vaccinia virus vectors as vaccine candidates. Adv. Exp. Med. Biol. 397, 7–13 (1996).

    Article  CAS  Google Scholar 

  34. Hooper, J.W., Custer, D.M. & Thompson, E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 306, 181–195 (2003).

    Article  CAS  Google Scholar 

  35. Chakrabarti, S., Sisler, J.R. & Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23, 1094–1097 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to S. Snodgrass for editorial assistance; M. Zanetti, B. Murphy and M. Martin for critical review of the manuscript; S. Gurunathan and B. Golding for helpful discussion; MedImmune, Centocor and Johnson & Johnson for providing access to monoclonal antibodies; T. Unangst, A. Cristillo, J. Bassler and V. Livingston for flow cytometry; S. Sloane for monkeypox DNA PCRs; E. Thompson for immunoprecipitation assays; and P. Markham, S. Orndorff, J. Treece, J. Parrish, J. Wells and P. Silvera for assistance with the animals. We also are very grateful to P. Jahrling and J. Huggins for providing the stock of the Zaire 79 strain. Reagents used in this study were provided by the US National Institutes of Health Nonhuman Primate Reagent Resource (RR016001, AI040101) and produced by the National Cell Culture Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genoveffa Franchini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edghill-Smith, Y., Golding, H., Manischewitz, J. et al. Smallpox vaccine–induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat Med 11, 740–747 (2005). https://doi.org/10.1038/nm1261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing