Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target

Abstract

Anaplastic large cell lymphomas (ALCLs) are caused by chromosomal translocations that juxtapose the anaplastic lymphoma kinase (ALK) proto-oncogene to a dimerization partner, resulting in constitutive expression of ALK and ALK tyrosine kinase activity. One substrate of activated ALK in human ALCLs is the transcription factor Stat3, and its phosphorylation is accurately recapitulated in a new nucleophosmin (NPM)-ALK transgenic mouse model of lymphomagenesis. Here we show by gene targeting that Stat3 is required for the transformation of mouse embryonic fibroblasts in vitro, for the development of B-cell lymphoma in transgenic mice and for the growth and survival of both human and mouse NPM-ALK–transformed B and T cells. Ablation of Stat3 expression by antisense oligonucleotides significantly (P < 0.0001) impaired the growth of human and mouse NPM-ALK tumors in vivo. Pharmacological ablation of Stat3 represents a new candidate approach for the treatment of human lymphoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constitutive activation of Stat3 in NPM-ALK–positive cells.
Figure 2: Stat3 is required for the transformation of NPM-ALK–positive fibroblasts.
Figure 3: Stat3 is not required for the neoplastic transformation of NPM-ALK transgenic T cells.
Figure 4: Stat3 is required for the maintenance of neoplastic T cells.
Figure 5: Stat3 is required for the growth and survival of NPM-ALK cells in vitro and in vivo.
Figure 6: Stat3 is required for the neoplastic transformation of NPM-ALK transgenic B cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Harris, N.L. et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84, 1361–1392 (1994).

    CAS  PubMed  Google Scholar 

  2. Morris, S.W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non- Hodgkin's lymphoma. Science 263, 1281–1284 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Drexler, H.G., Gignac, S.M., von Wasielewski, R., Werner, M. & Dirks, W.G. Pathobiology of NPM-ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia 14, 1533–1559 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bai, R.Y., Dieter, P., Peschel, C., Morris, S.W. & Duyster, J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol. Cell Biol. 18, 6951–6961 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuefer, M.U. et al. Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 90, 2901–2910 (1997).

    CAS  PubMed  Google Scholar 

  6. Chiarle, R. et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101, 1919–1927 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Duyster, J., Bai, R.Y. & Morris, S.W. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 20, 5623–5637 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Zamo', A. et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21, 1038–1047 (2002).

    Article  CAS  Google Scholar 

  9. Nieborowska-Skorska, M. et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 61, 6517–6523 (2001).

    CAS  PubMed  Google Scholar 

  10. Catlett-Falcone, R., Dalton, W.S. & Jove, R. STAT proteins as novel targets for cancer therapy. Signal transducer an activator of transcription. Curr. Opin. Oncol. 11, 490–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Aoki, Y., Feldman, G.M. & Tosato, G. Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 101, 1535–1542 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene 19, 2474–2488 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Grandis, J.R. et al. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc. Natl. Acad. Sci. USA 97, 4227–4232 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan, K.S. et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J. Clin. Invest. 114, 720–728 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raz, R., Lee, C.K., Cannizzaro, L.A., d'Eustachio, P. & Levy, D.E. Essential role of STAT3 for embryonic stem cell pluripotency. Proc. Natl. Acad. Sci. USA 96, 2846–2851 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kinsella, T.M. & Nolan, G.P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Goldman, J.M. & Melo, J.V. Chronic myeloid leukemia--advances in biology and new approaches to treatment. N. Engl. J. Med. 349, 1451–1464 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Bromberg, J. & Darnell, J.E., Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19, 2468–2473 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 9209–9214 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, C.K. et al. STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17, 63–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Butler, M. et al. Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51, 1028–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Sloop, K.W. et al. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J. Clin. Invest. 113, 1571–1581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang, Y. et al. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53, 410–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. De Paepe, P. et al. ALK activation by the CTLC-ALK fusion is a recurrent event in large B-cell lymphoma. Blood 102, 2638–2641 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Delsol, G. et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2; 5 translocation. Blood 89, 1483–1490 (1997).

    CAS  PubMed  Google Scholar 

  28. Schwaller, J. et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol. Cell. 6, 693–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Sexl, V. et al. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 96, 2277–2283 (2000).

    CAS  PubMed  Google Scholar 

  30. Huang, M. et al. Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 21, 8804–8816 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Horita, M. et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J. Exp. Med. 191, 977–984 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bromberg, J.F., Horvath, C.M., Besser, D., Lathem, W.W. & Darnell, J.E., Jr. Stat3 activation is required for cellular transformation by v-src. Mol. Cell Biol. 18, 2553–2558 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cessna, M.H. et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod. Pathol. 15, 931–938 (2002).

    Article  PubMed  Google Scholar 

  34. Schlessinger, K. & Levy, D.E. Malignant transformation depends on STAT3 for anchorage independent cell growth. Cancer Res. (in the press).

  35. Wolfer, A. et al. Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8T cell development. Nat. Immunol. 2, 235–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsumura, I. et al. Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J. 18, 1367–1377 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Albanese, C. et al. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270, 23589–23597 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Chiarle, R. et al. CD30 overexpression enhances negative selection in the thymus and mediates programmed cell death via a Bcl-2-sensitive pathway. J. Immunol. 163, 194–205 (1999).

    CAS  PubMed  Google Scholar 

  40. Lee, C.K., Gimeno, R. & Levy, D.E. Differential regulation of constitutive major histocompatibility complex class I expression in T and B lymphocytes. J. Exp. Med. 190, 1451–1464 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Silvennoinen, O., Schindler, C., Schlessinger, J. & Levy, D.E. Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science 261, 1736–1739 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D.R. Littman, I. Matsumura, R. Pestell and R. Jove for providing the transgenic, luciferase and Stat3β constructs and A. Loonstra and J. Jonkers for the Cre-ERT-EGFP construct. A special thanks to D.R. Littman and K. Rajewsky for providing the CD4-Cre and CD19-Cre transgenic mice, respectively. We are grateful to E. Skolnick for the critical reading of the manuscript and for discussions. We also thank J. Howes for the technical assistance. Supported by grants from the Multiple Myeloma Research Foundation (to G.I.) and US National Institutes of Health (to G.I. and D.E.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Inghirami.

Ethics declarations

Competing interests

Jim Karras is an employee of ISIS Pharmaceuticals.

Supplementary information

Supplementary Fig. 1

Stat3 is constitutively activated in mouse and human NPM-ALK positive cells. (PDF 107 kb)

Supplementary Fig. 2

Percentages of infection of Stat3loxP/− and Stat3−/− cells using with wild-type NPM-ALK or K210RNPM-ALK retroviruses. (PDF 41 kb)

Supplementary Fig. 3

Human Stat3 ASO block cell proliferation and induce cell death of ALCL-positive cells in vitro. (PDF 161 kb)

Supplementary Fig. 4

Stat3 ASO inhibit tumor growth and increase overall survival of mice bearing Stat3 positive NPM-ALK T cell tumors. (PDF 76 kb)

Supplementary Fig. 5

Biological changes induced by subcutaneous subministration of ASO. (PDF 186 kb)

Supplementary Fig. 6

Stat3 ASO leads to the downmodulation of mRNA levels of Stat3 in xenograft tissue tumor samples. (PDF 46 kb)

Supplementary Fig. 7

Tumors treated with Stat3 ASO undergo cell death. (PDF 226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiarle, R., Simmons, W., Cai, H. et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11, 623–629 (2005). https://doi.org/10.1038/nm1249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing