Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia

Abstract

Over 7 million people worldwide die annually from erratic heart rhythms (cardiac arrhythmias), and many more are disabled. Yet there is no imaging modality to identify patients at risk, provide accurate diagnosis and guide therapy. Standard diagnostic techniques such as the electrocardiogram (ECG) provide only low-resolution projections of cardiac electrical activity on the body surface. Here we demonstrate the successful application in humans of a new imaging modality called electrocardiographic imaging (ECGI), which noninvasively images cardiac electrical activity in the heart. In ECGI, a multielectrode vest records 224 body-surface electrocardiograms; electrical potentials, electrograms and isochrones are then reconstructed on the heart's surface using geometrical information from computed tomography (CT) and a mathematical algorithm. We provide examples of ECGI application during atrial and ventricular activation and ventricular repolarization in (i) normal heart (ii) heart with a conduction disorder (right bundle branch block) (iii) focal activation initiated by right or left ventricular pacing, and (iv) atrial flutter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Block diagram of the ECGI procedure.
Figure 2: Ventricular activation of subjects N and R.
Figure 3: Ventricular activation in subject P during RV (top) and LV (bottom) pacing.
Figure 4: Ventricular repolarization in subjects N, R and P.
Figure 5: Atrial activation.

Similar content being viewed by others

References

  1. Rudy, Y. & Burnes, J.E. Noninvasive electrocardiographic imaging. Ann. Noninvasive Electrocardiol. 4, 340–358 (1999).

    Article  Google Scholar 

  2. Oster, H.S., Taccardi, B., Lux, R.L., Ershler, P.R. & Rudy, Y. Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation 96, 1012–1024 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Oster, H.S., Taccardi, B., Lux, R.L., Ershler, P.R. & Rudy, Y. Electrocardiographic imaging: Noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms. Circulation 97, 1496–1507 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Burnes, J.E., Taccardi, B., MacLeod, R.S. & Rudy, Y. Noninvasive ECG imaging of electrophysiologically abnormal substrates in infarcted hearts: a model study. Circulation 101, 533–540 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Burnes, J.E., Taccardi, B. & Rudy, Y. A noninvasive imaging modality for cardiac arrhythmias. Circulation 102, 2152–2158 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burnes, J.E., Taccardi, B., Ershler, P.R. & Rudy, Y. Noninvasive electrocardiographic imaging of substrate and intramural ventricular tachycardia in infarcted hearts. J. Am. Coll. Cardiol. 38, 2071–2078 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghanem, R.N., Burnes, J.E., Waldo, A.L. & Rudy, Y. Imaging dispersion of myocardial repolarization, II: noninvasive reconstruction of epicardial measures. Circulation 104, 1306–1312 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Durrer, D. et al. Total excitation of the isolated human heart. Circulation 41, 899–912 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. Arisi, G., Macchi, E., Baruffi, S., Spaggiari, S. & Taccardi, B. Potential fields on the ventricular surface of the exposed dog heart during normal excitation. Circ. Res. 52, 706–715 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Wyndham, C.R. et al. Epicardial activation of the intact human heart without conduction defect. Circulation 59, 161–168 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Kupersmith, J. Electrophysiologic mapping during open heart surgery. Prog. Cardiovasc. Dis. XIX, 167–202 (1976).

    Article  Google Scholar 

  12. Spach, M.S., Barr, R.C., Lanning, C.F. & Tucek, P.C. Origin of body surface QRS and T wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation 55, 268–268 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Jouve, A. et al. Epicardial leads in man. Am. Heart J. 59, 856–868 (1959).

    Article  Google Scholar 

  14. Roos, J.P., van Dam, R.T. & Durrer, D. Epicardial and intramural excitation of normal heart in six patients 50 years of age and older. Br. Heart J. 30, 630–637 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lux, R.L., Green, L.S., MacLeod, R.S. & Taccardi, B. Assessment of spatial and temporal characteristics of ventricular repolarization. J. Electrocardiol. 27, 100–105 (1994).

    Article  PubMed  Google Scholar 

  16. Gima, K. & Rudy, Y. Ionic current basis of electrocardiographic waveforms: a model study. Circ. Res. 90, 889–896 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liebman, J., Rudy, Y., Diaz, P., Thomas, C.W. & Plonsey, R. The spectrum of right bundle branch block as manifested in electrocardiographic body surface potential maps. J. Electrocardiol. 17, 329–346 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Matsuo, K., Uno, K., Khrestian, C.M. & Waldo, A.L. Conduction left-to-right and right-to-left across the crista terminalis. Am. J. Physiol. Heart Circ. Physiol. 280, H1683–H1691 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Yamabe, H. et al. Conduction properties of the crista terminalis and its influence on the right atrial activation sequence in patients with typical atrial flutter. J. Pacing Clin. Electrophysiol. 25, 132–141 (2002).

    Article  Google Scholar 

  20. Daoud, E.G. & Morady, F. Pathophysiology of atrial flutter. Ann. Rev. Med. 49, 77–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez, L.-M., Timmermans, C., Nabar, A., Hofstra, L. & Wellens, H.J.J. Biatrial activation in isthmus-dependent atrial flutter. Circulation 104, 2545–2550 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Janse, M.J. & Wit, A.L. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev. 69, 1049–1169 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Sosa, E., Scanavacca, M. & D'Avila, A. Endocardial and epicardial ablation guided by nonsurgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia. J. Cardiovasc. Electrophysiol. 9, 229–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Ghanem, R.N., Ramanathan, C., Jia, P. & Rudy, Y. Heart-surface reconstruction and ECG electrodes localization using fluoroscopy, epipolar geometry and stereovision: application to noninvasive imaging of cardiac electrical activity. IEEE Trans. Med. Imaging 22, 1307–1318 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tikhonov, A.N. & Arsenin, V.Y. The regularization method. in Solutions of Ill-Posed Problems 45–94 (V.H. Winston & Sons, Washington DC, 1977).

    Google Scholar 

  26. Rudy, Y. & Oster, H.S. The electrocardiographic inverse problem. Crit. Rev. Biomed. Eng. 20, 25–45 (1992).

    CAS  PubMed  Google Scholar 

  27. Ramanathan, C., Jia, P., Ghanem, R.N., Calvetti, D. & Rudy, Y. Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual method (GMRes). Ann. Biomed. Eng. 31, 981–994 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Biermann, M. et al. The interpretation of cardiac electrograms. in Cardiac Mapping (eds. Shenasa, M., Borggrefe, M. & Breithardt, G.) 15–39 (Futura Publishing, Mount Kisco, New York, 2003).

    Google Scholar 

  29. Haws, C.W. & Lux, R.L. Correlation between in vivo transmembrane action potential durations and activation-recovery intervals from electrograms. Effects of interventions that alter repolarization time. Circulation 81, 281–288 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health/National Heart, Lung and Blood Institute grants R37-HL-33343 and R01-HL-49054 to Y.R. We thank L. Ciancibello for technical assistance in CT imaging; J. Haaga for access to CT; J. Sahadevan, A. Markowitz, A. Waldo, N. Varma and P. Dorostkar for their time, expert advice and access to electrophysiology facilities and patients; and E.T. DuPont for assistance in transporting images from the hospital to our computer facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Rudy.

Ethics declarations

Competing interests

C.R., R.N.G., P.J. and Y.R. are inventors on pending patent applications related to this technology. C.R. and P.J. have the prospect of future employment by a company for application of this technology.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanathan, C., Ghanem, R., Jia, P. et al. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med 10, 422–428 (2004). https://doi.org/10.1038/nm1011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing