Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins

Abstract

We identify berberine (BBR), a compound isolated from a Chinese herb, as a new cholesterol-lowering drug. Oral administration of BBR in 32 hypercholesterolemic patients for 3 months reduced serum cholesterol by 29%, triglycerides by 35% and LDL-cholesterol by 25%. Treatment of hyperlipidemic hamsters with BBR reduced serum cholesterol by 40% and LDL-cholesterol by 42%, with a 3.5-fold increase in hepatic LDLR mRNA and a 2.6-fold increase in hepatic LDLR protein. Using human hepatoma cells, we show that BBR upregulates LDLR expression independent of sterol regulatory element binding proteins, but dependent on ERK activation. BBR elevates LDLR expression through a post-transcriptional mechanism that stabilizes the mRNA. Using a heterologous system with luciferase as a reporter, we further identify the 5′ proximal section of the LDLR mRNA 3′ untranslated region responsible for the regulatory effect of BBR. These findings show BBR as a new hypolipidemic drug with a mechanism of action different from that of statin drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upregulation of LDLR expression by BBR in human hepatoma cell lines.
Figure 2: BBR increases LDLR expression by stabilizing LDLR mRNA through the 5′ proximal section of the LDLR mRNA 3′UTR.
Figure 3: Blocking ERK activation abolished the regulatory effect of BBR on LDLR.
Figure 4: BBR reduces plasma LDL-c and increases liver LDLR expression in hamsters.

References

  1. Brown, M.S. & Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  CAS  Google Scholar 

  2. Goldstein, J.L. & Brown, M.S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    Article  CAS  Google Scholar 

  3. Grundy, S.M. Statin trials and goals of cholesterol-lowering therapy. Circulation 97, 1436–1439 (1998).

    Article  CAS  Google Scholar 

  4. Ansell, B.J., Watson, K.E. & Fogelman, A.M. An evidence-based assessment of the NCEP adult treatment panel II guidelines. National cholesterol education program. JAMA 282, 2051–2057 (1999).

    Article  CAS  Google Scholar 

  5. Smith, J.R., Osborne, T.F.G.J.L. & Brown, M.S. Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. J. Biol. Chem. 265, 2306–2310 (1990).

    CAS  PubMed  Google Scholar 

  6. Briggs, M.R., Yokoyama, C., Wang, X.B.M.S. & Goldstein, J.L. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. J. Biol. Chem. 268, 14490–14496 (1993).

    CAS  PubMed  Google Scholar 

  7. Wang, X., Briggs, M.R., Yokoyama, C., Goldstein, J.L. & Brown, M.S. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter II. Purification and characterization. J. Biol. Chem. 268, 14497–14504 (1993).

    CAS  PubMed  Google Scholar 

  8. Yokoyama, C. et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75, 187–197 (1993).

    Article  CAS  Google Scholar 

  9. Wang, X., Sato, R., Brown, M.S., Hua, X. & Goldstein, J.L. SREBP-1, a membrane bound transcription factor released by sterol-regulated proteolysis. Cell 77, 53–62 (1994).

    Article  CAS  Google Scholar 

  10. Norturfft, A., DeBose-Boyd, R.A., Scheek, S., Goldstein, J.L. & Brown, M.S. Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc. Natl. Acad. Sci. USA 96, 11235–11240 (1999).

    Article  Google Scholar 

  11. Brown, M.S. & Goldstein, J.L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl. Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  Google Scholar 

  12. Nohturfft, A., Yabe, D., Goldstein, J.L., Brown, M.S. & Espenshade, P.J. Regulated step in cholesterol feedback localized to budding of SCAP from ER membrane. Cell 102, 315–323 (2000).

    Article  CAS  Google Scholar 

  13. Yang, T., Goldstein, J.L. & Brown, M.S. Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAP. SREBP exit from endoplasmic reticulum. J. Biol. Chem. 275, 29881–29886 (2000).

    Article  CAS  Google Scholar 

  14. Sakai, J. & Rawson, R.B. The sterol regulatory element-protein pathway: control of lipid homeostasis through regulated intracellular transport. Curr. Opin. Lipidol. 12, 261–266 (2001).

    Article  CAS  Google Scholar 

  15. Goldstein, J.L., Rawson, R.B. & Brown, M.S. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch. Biochem. Biophys. 397, 139–148 (2002).

    Article  CAS  Google Scholar 

  16. LaRosa, J.C. & He, J.V.S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 282, 2340–2346 (1999).

    Article  CAS  Google Scholar 

  17. MRC/BHF. Heart protection study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  18. Yeung, A. & Tsao, P. Statin therapy: beyond cholesterol lowering and antiinflammatory effects. Circulation 105, 2937–2938 (2002).

    Article  Google Scholar 

  19. Expert panel on detection evaluation and treatment of high blood cholesterol in adults. Executive summary of the third report of the national cholesterol education program (NCEP). JAMA 285, 2486–2497 (2001).

  20. Cho, E. Berberini hydrochloride. in Pharmacopoeia of the People's Republic of China 2, 437–439 (1990).

    Google Scholar 

  21. Luo, L.J. Experience of berberine in the treatment of diarrhea. Chin. J. Med. 41, 452–455 (1955).

    Google Scholar 

  22. Lau, C.W., Yao, X.Q., Chen, Z.Y., Ko, W.H. & Huang, Y. Cardiovascular actions of berberine. Cardiovasc. Drug Rev. 19, 234–244 (2001).

    Article  CAS  Google Scholar 

  23. Liu . Berberine. Altern. Med. Rev. 5, 175–177 (2000).

    Google Scholar 

  24. Grand-Perret, T. et al. SCAP ligands are potent new lipid-lowering drugs. Nat. Med. 7, 1332–1338 (2001).

    Article  CAS  Google Scholar 

  25. Liu, J., Ahlborn, T.E., Briggs, M.R. & Kraemer, F.B. Identification of a novel sterol-independent regulatory element in the human low density lipoprotein receptor promoter. J. Biol. Chem. 275, 5214–5221 (2000).

    Article  CAS  Google Scholar 

  26. Zhang, F., Ahlborn, T.E., Li, C., Kraemer, F.B. & Liu, J. Identification of Egr1 as the oncostatin M-induced transcription activator that binds to the sterol-independent regulatory element of the human LDL receptor promoter. J. Lipid Res. 43, 1477–1485 (2002).

    Article  CAS  Google Scholar 

  27. Liu, J., Zhang, F., Li, C., Lin, M. & Briggs, M.R. Synergistic activation of human LDL receptor expression by SCAP ligand and cytokine oncostatin M. Arterioscler. Thromb. Vasc. Biol. 23, 90–96 (2003).

    Article  Google Scholar 

  28. Yamamoto, T. et al. The human LDL receptor: A cyctein-rich protein with multiple Alu sequence in its mRNA. Cell 39, 27–38 (1984).

    Article  CAS  Google Scholar 

  29. Knouff, C., Malloy, S., Wilder, J., Altenburg, M.K. & Maeda, N. Doubling expression of the low density lipoprotein receptor by truncation of the 3′-untranslated region sequence ameliorates type III hyperlipoproteinemia in mice expressing the human apoE2 isoform. J. Biol. Chem. 276, 3856–3862 (2001).

    Article  CAS  Google Scholar 

  30. Wilson, G.M., Vasa, M.Z. & Deeley, R.G. Stabilization and cytoskeletal-association of LDL receptor mRNA are mediated by distinct domains in its 3′ untranslated region. J. Lipid Res. 39, 1025–1032 (1998).

    CAS  PubMed  Google Scholar 

  31. Sugiura, R. et al. Feedback regulation of MAPK signaling by an RNA-binding protein. Nature 424, 961–965 (2003).

    Article  CAS  Google Scholar 

  32. Zhao, S.P. Etiology and diagnosis of hyperlipidemia. Clinical Serum and Lipid 1, 72–94 (1997).

    Google Scholar 

  33. Horton, J.D., Cuthbert, J.A. & Spady, D.K. Dietary fatty acids regulate hepatic low-density lipoprotein (LDL) transport by altering LDL receptor protein and messenger-RNA levels. J. Clin. Invest. 92, 743–749 (1993).

    Article  CAS  Google Scholar 

  34. Bensch, W.R., Gadski, R.A., Bean, J.S., et al. Effects of LY295427, a low-density lipoprotein (LDL) receptor up-regulator, on LDL receptor gene transcription and cholesterol metabolism in normal and hypercholesterolemic hamsters. J. Pharmacol. Exp. Ther. 289, 85–92 (1999).

    CAS  PubMed  Google Scholar 

  35. Ugawa, T., Kakuta, H., Moritani, H. & Inagaki, O. Effect of YM-53601, a novel squalene synthase inhibitor, on the clearance rate of plasma LDL and VLDL in hamsters. Br. J. Pharmacol. 137, 561–567 (2002).

    Article  CAS  Google Scholar 

  36. Nakahara, M., Fujii, H., Maloney, P.R., Shimizu, M. & Sato, R. Bile acids enhance low density lipoprotein receptor gene expression via a MAPK cascade-mediated stabilization of mRNA. J. Biol. Chem. 277, 37229–37234 (2002).

    Article  CAS  Google Scholar 

  37. Liu, J. et al. Novel mechanism of transcriptional activation of hepatic LDL receptor by oncostatin M. J. Lipid Res. 38, 2035–2048 (1997).

    CAS  PubMed  Google Scholar 

  38. Liu, J., Hadjokas, N., Mosley, B. & Vestal, R.E. Oncostatin M-specific receptor expression and function in regulating cell proliferation of normal and malignant mammary epithelial cells. Cytokine 10, 295–302 (1998).

    Article  CAS  Google Scholar 

  39. Dixon, D.A., Kaplan, C.D., McIntyre, T.M., Zimmerman, G.A. & Prescott, S.M. Post-transcriptional control of cyclooxygenase-2 gene expression. J. Biol. Chem. 275, 11750–11757 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. B. Kraemer for his review of the manuscript and S. M. Prescott for providing the pLuc plasmid. This study was supported by the National Natural Sciences Foundation of China (39925037, 39870889 & 39930190; J.-D.J.), by the Department of Veterans Affairs (Office of Research and Development, Medical Research Service; J. Liu) and by grant (1RO1CA83648-01; J.L.) from United States National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingwen Liu or Jian-Dong Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Effects of BBR in the entire hypercholesterolemic patient cohort (PDF 25 kb)

Supplementary Table 2

Characterization of the subgroup of hypercholesterolemic patients who were not taking other medication before or during BBR treatment (PDF 16 kb)

Supplementary Table 3

Lipid-lowering effect of BBR in hypercholesterolemia Type IIa & IIb (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, W., Wei, J., Abidi, P. et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10, 1344–1351 (2004). https://doi.org/10.1038/nm1135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing