Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection

Abstract

Innate immune responses provide the host with an early protection barrier against infectious agents, including viruses, and help shape the nature and quality of the subsequent adaptive immune responses of the host1. Expression of ISG15 (UCRP), a ubiquitin-like protein, and protein ISGylation are highly increased upon viral infection2,3,4. We have identified UBP43 (USP18) as an ISG15 deconjugating protease5. Protein ISGylation is enhanced in cells deficient in UBP43 (ref. 6). Here we have examined the role of UBP43, encoded by the gene Usp18, in innate immunity to virus infection. Usp18−/− mice were resistant to the fatal lymphocytic choriomeningitis and myeloencephalitis that developed in wild-type mice after intracerebral inoculation with lymphocytic choriomeningitis virus (LCMV) or vesicular stomatitis virus (VSV), respectively. Survival of Usp18−/− mice after intracerebral LCMV infection correlated with a severe inhibition of LCMV RNA replication and antigen expression in the brain and increased levels of protein ISGylation. Consistent with these findings, mouse embryonic fibroblasts (MEF) and bone marrow–derived macrophages from Usp18−/− mice showed restricted LCMV replication. Moreover, MEF from Usp18−/− mice showed enhanced interferon-mediated resistance to the cytopathic effect caused by VSV and Sindbis virus (SNV). This report provides the first direct evidence that the ISG15 protease UBP43 and possibly protein ISGylation have a role in innate immunity against viral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LCMV infection induces expression of ISG15 in brain and immunohistochemical analysis of meninges of wild-type and Usp18−/− mice.
Figure 2: Protection from lethal LCMV and VSV infection in Usp18−/− mice.
Figure 3: Diminished virus-specific T-cell responses to LCMV in Usp18−/− mice and impaired replication of LCMV in Usp18−/− cells.
Figure 4: Usp18-deficient cells are more resistant to viral infection and normal levels of LCMV multiplication are restored in Usp18+/−Ifnar1−/− mice.

Similar content being viewed by others

References

  1. Biron, C.A. Initial and innate responses to viral infections-pattern setting in immunity or disease. Curr. Opin. Microbiol. 2, 374–381 (1999).

    Article  CAS  Google Scholar 

  2. Farrell, P.J., Broeze, R.J. & Lengyel, P. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 279, 523–525 (1979).

    Article  CAS  Google Scholar 

  3. Haas, A.L., Ahrens, P., Bright, P.M. & Ankel, H. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem. 262, 11315–11323 (1987).

    CAS  PubMed  Google Scholar 

  4. Kim, K.I. & Zhang, D.E. ISG15, not just another ubiquitin-like protein. Biochem. Biophys. Res. Commun. 307, 431–434 (2003).

    Article  CAS  Google Scholar 

  5. Malakhov, M.P., Malakhova, O.A., Kim, K.I., Ritchie, K.J. & Zhang, D.E. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277, 9976–9981 (2002).

    Article  CAS  Google Scholar 

  6. Ritchie, K.J. et al. Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev. 16, 2207–2212 (2002).

    Article  CAS  Google Scholar 

  7. Merigan, T.C., Oldstone, M.B. & Welsh, R.M. Interferon production during lymphocytic choriomeningitis virus infection of nude and normal mice. Nature 268, 67–68 (1977).

    Article  CAS  Google Scholar 

  8. Leist, T.P. et al. Lack of correlation between serum titres of interferon alpha, beta, natural killer cell activity and clinical susceptibility in mice infected with two isolates of lymphocytic choriomeningitis virus. J. Gen. Virol. 68, 2213–2218 (1987).

    Article  CAS  Google Scholar 

  9. Loeb, K.R. & Haas, A.L. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J. Biol. Chem. 267, 7806–7813 (1992).

    CAS  PubMed  Google Scholar 

  10. Ritchie, K.J. & Zhang, D.E. ISG15: the immunological kin of ubiquitin. Semin. Cell Dev. Biol. 15, 237–246 (2004).

    Article  CAS  Google Scholar 

  11. McGavern, D.B., Homann, D. & Oldstone, M.B. T cells in the central nervous system: the delicate balance between viral clearance and disease. J. Infect. Dis. 186 Suppl 2, S145–S151 (2002).

    Article  Google Scholar 

  12. Buchmeier, M.J., Bowen, M.D. & Peters, C.J. in Fields Virology. (eds. Knipe, D. & Howley, P.) Ch. 50, 1635–1668 (Lippincott Williams & Wilkins, Philadelphia, 2000).

    Google Scholar 

  13. Doherty, P.C. Cell-mediated immunity in virus infections of the central nervous system. Ann. NY Acad. Sci. 540, 228–239 (1988).

    Article  CAS  Google Scholar 

  14. Malakhov, M.P. et al. High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J. Biol. Chem. 278, 16608–16613 (2003).

    Article  CAS  Google Scholar 

  15. Gresser, I. & Enders, J.F. Alteration of cellular resistance to Sindbis virus in mixed cultures of human cells attributable to interferon. Virology 16, 428–435 (1962).

    Article  CAS  Google Scholar 

  16. Ito, Y. & Montagnier, L. Heterogeneity of the sensitivity of vesicular stomatitis virus to interferons. Infect. Immun. 18, 23–27 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pfau, C.J., Gresser, I. & Hunt, K.D. Lethal role of interferon in lymphocytic choriomeningitis virus-induced encephalitis. J. Gen. Virol. 64, 1827–1830 (1983).

    Article  CAS  Google Scholar 

  18. Cousens, L.P. et al. Two roads diverged: interferon alpha/beta- and interleukin 12-mediated pathways in promoting T cell interferon gamma responses during viral infection. J. Exp. Med. 189, 1315–1328 (1999).

    Article  CAS  Google Scholar 

  19. Ou, R., Zhou, S., Huang, L. & Moskophidis, D. Critical role for alpha/beta and gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J. Virol. 75, 8407–8423 (2001).

    Article  CAS  Google Scholar 

  20. Yuan, W. & Krug, R.M. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20, 362–371 (2001).

    Article  CAS  Google Scholar 

  21. Malakhova, O.A. et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 17, 455–460 (2003).

    Article  CAS  Google Scholar 

  22. Hamerman, J.A. et al. Serpin 2a is induced in activated macrophages and conjugates to a ubiquitin homolog. J. Immunol. 168, 2415–2423 (2002).

    Article  CAS  Google Scholar 

  23. Darnell, J.E., Jr, Kerr, I.M. & Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  Google Scholar 

  24. Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  CAS  Google Scholar 

  25. Dutko, F.J. & Oldstone, M.B. Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. J. Gen. Virol. 64, 1689–1698 (1983).

    Article  CAS  Google Scholar 

  26. Holland, J.J. et al. Virus mutation frequencies can be greatly underestimated by monoclonal antibody neutralization of virions. J. Virol. 63, 5030–5036 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hahn, Y.S., Guanzon, A., Rice, C.M. & Hahn, C.S. Class I MHC molecule-mediated inhibition of Sindbis virus replication. J. Immunol. 162, 69–77 (1999).

    CAS  PubMed  Google Scholar 

  28. Pinschewer, D.D., Perez, M., Sanchez, A.B. & de la Torre, J.C. Recombinant lymphocytic choriomeningitis virus expressing vesicular stomatitis virus glycoprotein. Proc. Natl. Acad. Sci. USA 100, 7895–7900 (2003).

    Article  CAS  Google Scholar 

  29. Lewicki, H. et al. CTL escape viral variants. I. Generation and molecular characterization. Virology 210, 29–40 (1995).

    Article  CAS  Google Scholar 

  30. Homann, D. et al. Evidence for an underlying CD4 helper and CD8 T-cell defect in B-cell-deficient mice: failure to clear persistent virus infection after adoptive immunotherapy with virus-specific memory cells from muMT/muMT mice. J. Virol. 72, 9208–9216 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the DEZ laboratory for valuable discussions, M. Shen and J. Kuan for animal husbandry and genotyping, K. Edelmann for assistance with the analysis of virus-specific T-cell responses. This work is supported by National Institutes of Health Grants CA079849 (DEZ), GM066955 (DEZ), and AI047140 (JCT). The Stein Endowment Fund has partially supported the Department of Molecular and Experimental Medicine departmental molecular biology service laboratory for DNA sequencing and oligonucleotide synthesis. This is manuscript 16008-MEM from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Carlos de la Torre or Dong-Er Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, K., Hahn, C., Kim, K. et al. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med 10, 1374–1378 (2004). https://doi.org/10.1038/nm1133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing