Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle

Abstract

Excessive salt intake is a major risk factor for hypertension. Here we identify the role of Na+/Ca2+ exchanger type 1 (NCX1) in salt-sensitive hypertension using SEA0400, a specific inhibitor of Ca2+ entry through NCX1, and genetically engineered mice. SEA0400 lowers arterial blood pressure in salt-dependent hypertensive rat models, but not in other types of hypertensive rats or in normotensive rats. Infusion of SEA0400 into the femoral artery in salt-dependent hypertensive rats increases arterial blood flow, indicating peripheral vasodilation. SEA0400 reverses ouabain-induced cytosolic Ca2+ elevation and vasoconstriction in arteries. Furthermore, heterozygous NCX1-deficient mice have low salt sensitivity, whereas transgenic mice that specifically express NCX1.3 in smooth muscle are hypersensitive to salt. SEA0400 lowers the blood pressure in salt-dependent hypertensive mice expressing NCX1.3, but not in SEA0400-insensitive NCX1.3 mutants. These findings indicate that salt-sensitive hypertension is triggered by Ca2+ entry through NCX1 in arterial smooth muscle and suggest that NCX1 inhibitors might be useful therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NCX1 inhibition and antihypertensive effects of SEA0400.
Figure 2: Vascular responses to intrafemoral infusion of SEA0400 in anesthetized DOCA-salt hypertensive or uninephrectomized sham rats.
Figure 3: Effects of SEA0400 on ouabain-induced hypertension and vasoconstriction.
Figure 4: Effects of low-dose ouabain and SEA0400 on cytosolic Ca2+ level and myogenic tone (MT) in pressurized mouse small mesenteric arteries.
Figure 5: Prevention of DOCA-salt hypertension in Slc8a1+/− mice.
Figure 6: Enhanced salt-sensitivity in N1.3Tg/Tg or mN1.3Tg/Tg mice.

Similar content being viewed by others

References

  1. Mosterd, A. et al. Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989. N. Engl. J. Med. 340, 1221–1227 (1999).

    Article  CAS  Google Scholar 

  2. Kannel, W.B. Elevated systolic blood pressure as a cardiovascular risk factor. Am. J. Cardiol. 85, 251–255 (2000).

    Article  CAS  Google Scholar 

  3. Cowley, A.W. Long-term control of arterial blood pressure. Physiol. Rev. 72, 231–300 (1992).

    Article  Google Scholar 

  4. Blaustein, M.P. Physiological effects of endogenous ouabain: control of intracellular calcium stores and cell responsiveness. Am. J. Physiol. 264, C1367–C1387 (1993).

    Article  CAS  Google Scholar 

  5. Haddy, F.J. & Pamnani, M.B. Role of dietary salt in hypertension. J. Am. Coll. Nutr. 14, 428–438 (1995).

    Article  CAS  Google Scholar 

  6. Lifton, R.P., Gharavi, A.G. & Geller, D.S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    Article  CAS  Google Scholar 

  7. Hamlyn, J.M. et al. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA 88, 6259–6263 (1991).

    Article  CAS  Google Scholar 

  8. Schneider, R. et al. Bovine adrenals contain, in addition to ouabain, a second inhibitor of the sodium pump. J. Biol. Chem. 273, 784–792 (1998).

    Article  CAS  Google Scholar 

  9. Bagrov, A.Y. et al. Characterization of a urinary bufodienolide Na+,K+-ATPase inhibitor in patients after acute myocardial infarction. Hypertension 31, 1097–1103 (1998).

    Article  CAS  Google Scholar 

  10. Schoner, W. Endogenous cardiac glycosides, a new class of steroid hormones. Eur. J. Biochem. 269, 2440–2448 (2002).

    Article  CAS  Google Scholar 

  11. Hamlyn, J.M. et al. A circulating inhibitor of (Na++K+)-ATPase associated with essential hypertension. Nature 300, 650–652 (1982).

    Article  CAS  Google Scholar 

  12. Hasegawa, T., Masugi, F., Ogihara, T. & Kumahara, Y. Increase in plasma ouabainlike inhibitor of Na+,K+-ATPase with high sodium intake in patients with essential hypertension. J. Clin. Hypertens. 3, 419–429 (1987).

    CAS  Google Scholar 

  13. Hamlyn, J.M., Hamilton, B.P. & Manunta, P. Endogenous ouabain, sodium balance and blood pressure: a review and a hypothesis. J. Hypertens. 14, 151–167 (1996).

    Article  CAS  Google Scholar 

  14. Manunta, P. et al. Left ventricular mass, stroke volume, and ouabain-like factor in essential hypertension. Hypertension 34, 450–456 (1999).

    Article  CAS  Google Scholar 

  15. Goto, A. & Yamada, K. Putative roles of ouabainlike compound in hypertension: revisited. Hypertens. Res. 23, S7–S13. (2000).

    Article  CAS  Google Scholar 

  16. Fedorova, O.V., Lakatta, E.G. & Bagrov, A.Y. Endogenous Na,K pump ligands are differentially regulated during acute NaCl loading of Dahl rats. Circulation 102, 3009–3014 (2000).

    Article  CAS  Google Scholar 

  17. Ferrari, P. et al. PST2238: a new antihypertensive compound that antagonizes the long-term pressor effect of ouabain. J. Pharmacol. Exp. Ther. 285, 83–94 (1998).

    CAS  Google Scholar 

  18. Takahashi, H. Endogenous digitalislike factor: an update. Hypertens. Res. 23, S1–S5 (2000).

    Article  Google Scholar 

  19. Blaustein, M.P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am. J. Physiol. 232, C165–C173 (1977).

    Article  CAS  Google Scholar 

  20. Philipson, K.D. & Nicoll, D.A. Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133. (2000).

    Article  CAS  Google Scholar 

  21. Nakasaki, Y., Iwamoto, T., Hanada, H., Imagawa, T. & Shigekawa, M. Cloning of the rat aortic smooth muscle Na+/Ca2+ exchanger and tissue-specific expression of isoforms. J. Biochem. 114, 528–534 (1993).

    Article  CAS  Google Scholar 

  22. Lee, S.L., Yu, A.S. & Lytton, J. Tissue-specific expression of Na+-Ca2+ exchanger isoforms. J. Biol. Chem. 269, 14849–14852 (1994).

    CAS  Google Scholar 

  23. Quednau, B.D., Nicoll, D.A. & Philipson, K.D. Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. 272, C1250–C1261 (1997).

    Article  CAS  Google Scholar 

  24. Bers, D.M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    Article  CAS  Google Scholar 

  25. Blaustein, M.P. & Lederer, W.J. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999).

    Article  CAS  Google Scholar 

  26. Shigekawa, M. & Iwamoto, T. Cardiac Na+-Ca2+ exchange: molecular and pharmacological aspects. Circ. Res. 88, 864–876 (2001).

    Article  CAS  Google Scholar 

  27. Matsuda, T. et al. SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J. Pharmacol. Exp. Ther. 298, 249–256 (2001).

    CAS  Google Scholar 

  28. Iwamoto, T. et al. Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400. J. Biol. Chem. 279, 7544–7553 (2004).

    Article  CAS  Google Scholar 

  29. Yuan, C.M. et al. Long-term ouabain administration produces hypertension in rats. Hypertension 22, 178–187 (1993).

    Article  CAS  Google Scholar 

  30. Manunta, P., Rogowski, A.C., Hamilton, B.P. & Hamlyn, J.M. Ouabain-induced hypertension in the rat: relationships among plasma and tissue ouabain and blood pressure. J. Hypertens. 12, 549–560 (1994).

    Article  CAS  Google Scholar 

  31. Berne, R.M. & Levy, M.N. Chapter V. Hemodynamics. in Cardiovascular Physiology edn. 8 (eds. Berne, R.M. & Levy, M.N.) 115–134 (Mosby, St. Louis, 2001).

    Google Scholar 

  32. Knot, H.J. & Nelson, M.T. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J. Physiol. 508, 199–209 (1998).

    Article  CAS  Google Scholar 

  33. Tanaka, H. et al. Effect of SEA0400, a novel inhibitor of sodium-calcium exchanger, on myocardial ionic currents. Br. J. Pharmacol. 135, 1096–1100 (2002).

    Article  CAS  Google Scholar 

  34. Wakimoto, K. et al. Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J. Biol. Chem. 275, 36991–36998 (2000).

    Article  CAS  Google Scholar 

  35. Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  36. Poburko, D., Kuo, K.H., Dai, J., Lee, C.H. & van Breemen, C. Organellar junctions promote targeted Ca2+ signaling in smooth muscle: why two membranes are better than one. Trends Pharmacol. Sci. 25, 8–15 (2004).

    Article  CAS  Google Scholar 

  37. Slodzinski, M.K., Juhaszova, M. & Blaustein, M.P. Antisense inhibition of Na+/Ca2+ exchange in primary cultured arterial myocytes. Am. J. Physiol. 269, C1340–C1345 (1995).

    Article  CAS  Google Scholar 

  38. Slodzinski, M.K. & Blaustein, M.P. Physiological effects of Na+/Ca2+ exchanger knockdown by antisense oligodeoxynucleotides in arterial myocytes. Am. J. Physiol. 275, C251–C259 (1998).

    Article  CAS  Google Scholar 

  39. Sweadner, K.J. Isozymes of the Na+/K+-ATPase. Biochim. Biophys. Acta. 988, 185–220 (1989).

    Article  CAS  Google Scholar 

  40. Moore, E.D. et al. Coupling of the Na+/Ca2+ exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature 365, 657–660 (1993).

    Article  CAS  Google Scholar 

  41. Juhaszova, M. & Blaustein, M.P. Distinct distribution of different Na+ pump α subunit isoforms in plasmalemma. Physiological implications. Ann. N.Y. Acad. Sci. 834, 524–536 (1997).

    Article  CAS  Google Scholar 

  42. Fujioka, Y., Matsuoka, S., Ban, T. & Noma, A. Interaction of the Na+-K+ pump and Na+-Ca2+ exchange via [Na+]i in a restricted space of guinea-pig ventricular cells. J. Physiol. 509, 457–470 (1998).

    Article  CAS  Google Scholar 

  43. Arnon, A., Hamlyn, J.M. & Blaustein, M.P. Ouabain augments Ca2+ transients in arterial smooth muscle without raising cytosolic Na+. Am. J. Physiol. 279, H679–H691 (2000).

    CAS  Google Scholar 

  44. Reuter, H. et al. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 90, 305–308 (2002).

    Article  CAS  Google Scholar 

  45. Aizman, O., Uhlen, P., Lal, M., Brismar, H. & Aperia, A. Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc. Natl. Acad. Sci. USA 98, 13420–13424 (2001).

    Article  CAS  Google Scholar 

  46. Krushkal, J. et al. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 99, 1407–1410 (1999).

    Article  CAS  Google Scholar 

  47. Iwamoto, T., Pan, Y., Nakamura, T.Y., Wakabayashi, S. & Shigekawa, M. Protein kinase C-dependent regulation of Na+/Ca2+ exchanger isoforms NCX1 and NCX3 does not require their direct phosphorylation. Biochemistry 37, 17230–17238 (1998).

    Article  CAS  Google Scholar 

  48. Zhang, J., Wier, W.G. & Blaustein, M.P. Mg2+ blocks myogenic tone but not K+-induced constriction: role for SOCs in small arteries. Am. J. Physiol. 283, H2692–H2705 (2002).

    Article  CAS  Google Scholar 

  49. Yamashita, J. et al. Attenuation of ischemia/reperfusion-induced renal injury in mice deficient in Na+/Ca2+ exchanger. J. Pharmacol. Exp. Ther. 304, 284–293 (2003).

    Article  CAS  Google Scholar 

  50. Matsumura, Y. et al. Exaggerated vascular and renal pathology in endothelin-B receptor-deficient rats with deoxycorticosterone acetate-salt hypertension. Circulation 102, 2765–2773 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Takahashi and S. Okuyama (Taisho Pharmaceutical Co. Ltd.), K. Saku and H. Urata (Fukuoka University), J. Kimura (Fukushima Medical University) and Y. Matsumura (Osaka University of Pharmaceutical Sciences) for discussions, and W.G. Wier and R. Saunders (University of Maryland) for help in making the video clip. This work was supported by Grants-in-Aid for scientific research (14570097, 16590213) from the Ministry of Education, Science and Culture of Japan, a grant from the Salt Science Research Foundation (No.02), US National Institutes of Health grant HL-45215, and an American Heart Association Mid-Atlantic Affiliate Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Iwamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression levels and NCX activities in CCL39 fibroblasts overexpressing human NCX1 isoforms. (PDF 232 kb)

Supplementary Fig. 2

Effect of SEA0400 on the development of DOCA-salt hypertension in rats. (PDF 633 kb)

Supplementary Fig. 3

VSM-specific overexpression of NCX1.3 and its mutant in N1.3Tg/Tg and N1.3Tg/Tg mice. (PDF 233 kb)

Supplementary Fig. 4

Salt-insensitivity in transgenic mice with heart-specific overexpression of NCX1.1. (PDF 302 kb)

Supplementary Table 1

Effects of SEA0400 on morphological changes of thoracic aortas in DOCA-salt hypertensive rats (PDF 10 kb)

Supplementary Table 2

Effects of SEA0400 on creatinine clearance, urinary excretion of protein, and fractional excretion of sodium in DOCA-salt hypertensive rats (PDF 10 kb)

Supplementary Movie

Effects of ouabain and SEA0400 on cytosolic Ca2+ and myogenic tone in a small mesenteric artery. (MOV 2980 kb)

Supplementary Methods (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamoto, T., Kita, S., Zhang, J. et al. Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat Med 10, 1193–1199 (2004). https://doi.org/10.1038/nm1118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing