Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectacle lenses alter eye growth and the refractive status of young monkeys

Abstract

The influence of visual experience on ocular development in higher primates is not well understood. To investigate the possible role of defocus in regulating ocular growth, spectacle lenses were used to optically simulate refractive anomalies in young monkeys (for example, myopia or nearsightedness). Both positive and negative lenses produced compensating ocular growth that reduced the lens-induced refractive errors and, at least for low lens powers, minimized any refractive-error differences between the two eyes. These results indicate that the developing primate visual system can detect the presence of refractive anomalies and alter each eye's growth to eliminate these refractive errors. Moreover, these results support the hypothesis that spectacle lenses can alter eye development in young children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Charman, W.N. Optics of the human eye. in Vision and Visual Dysfunction, vol. 1, Visual Optics and Instrumentation (ed. Charman, W.) 1–20 (CRC Press, Boston, 1991).

    Google Scholar 

  2. Green, D.G., Powers, M.K. & Banks, M.S. Depth of focus, eye size, and visual acuity. Vision Res. 20, 827–835 (1980).

    Article  CAS  Google Scholar 

  3. Schaeffel, F., Glasser, A. & Howland, H.C. modation, refractive error, and eye growth in chickens. Vision Res. 28, 639–657 (1988).

    Article  CAS  Google Scholar 

  4. Schaeffel, F. & Howland, H.C. Mathematical model of emmetropization in the chicken. J. Opt. Soc. Am. A 5, 2080–2086 (1988).

    Article  CAS  Google Scholar 

  5. Schaeffel, F., Troilo, D., Wallman, J. & Howland, H.C. Developing eyes that lack accommodation grow to compensate for imposed defocus. Vis. Neurosci. 4, 177–183 (1990).

    Article  CAS  Google Scholar 

  6. Irving, E.L., Callender, M.G. & Sivak, J.G. Inducing myopia, hyperopia, and astigmatism in chicks. Optom. vis. Sci. 68, 364–368 (1991);

    Article  CAS  Google Scholar 

  7. Irving, E.X., Sivak, J.G. & Callender, M.G. Refractive plasticity of the developing chick eye. Ophthal. Physiol. Opt. 12, 448–456 (1992).

    Article  CAS  Google Scholar 

  8. Rohrer, B., Schaeffel, F. & Zrenner, E. Longitudinal chromatic aberration and emmetropizaton: Results from the chicken eye. J. Physiol. 449, 363–376 (1992).

    Article  CAS  Google Scholar 

  9. Wildsoet, C.F., Howland, H.C., Falconer, S. & Dick, K. Chromatic aberration and accommodation: Their role in emmetropization in the chick. Vision Res. 33, 1593–1603 (1993).

    Article  CAS  Google Scholar 

  10. Hendrickson, P. & Rosenblum, W. Accommodation demand and deprivation in kitten ocular development. Invest Ophthalmol. vis. Sci. 26, 343–349 (1985).

    CAS  PubMed  Google Scholar 

  11. Ni, J. & Smith, E.L. Effects of chronic optical defocus on the kitten's refractive status. Vision Res. 29, 929–938 (1989).

    Article  CAS  Google Scholar 

  12. Smith, E.L., Harwerth, R.S. & Crawford, M.L.J. Spatial contrast sensitivity deficits in monkeys produced by optically induced anisometropia. Invest. Ophthalmol. Vis. Sci. 26, 330–342 (1985).

    PubMed  Google Scholar 

  13. Crewther, S.G., Nathan, J., Kiely, P.M., Brennan, N.A. & Crewther, D.P. The effect of defocusing contact lenses on refraction in cynomolgus monkeys. Clin. vis. Sci. 3, 221–228 (1988).

    Google Scholar 

  14. Chung, K. Critical review: Effects of optical defocus on refractive development and ocular growth and relation to accommodation. Optom. vis. Sci. 70, 228–233 (1993).

    Article  CAS  Google Scholar 

  15. Smith, E.L., Hung, L.-F. & Harwerth, R.S. Effects of optically induced blur on the refractive status of young monkeys. Vision Res. 34, 293–301 (1994).

    Article  Google Scholar 

  16. Schaeffel, F. & Howland, H.C. Properties of the feedback loops controlling eye growth and refractive state in the chicken. Vision Res. 31, 717–734 (1991).

    Article  CAS  Google Scholar 

  17. Troilo, D. & Wallman, J. The regulation of eye growth and refractive state: An experimental study of emmetropization. Vision Res. 31, 1237–1250 (1991).

    Article  CAS  Google Scholar 

  18. Kiorpes, L. & Wallman, J. Does experimentally-induced amblyopia cause hyperopia in monkeys? Vision Res. 35, 1289–1297 (1995).

    Article  CAS  Google Scholar 

  19. Schaeffel, F., Howland, H.C. & Farkas, L. Natural accommodation in the growing chicken. Vision Res. 26, 1977–1993 (1986).

    Article  CAS  Google Scholar 

  20. Raviola, E. & Wiesel, T.N. An animal model of myopia. New Engl. J. Med. 312, 1609–1615 (1985).

    Article  CAS  Google Scholar 

  21. Smith, E.L., Harwerth, R.S., Crawford, M.L.J. & von Noorden, G.K. Observations on the effects of form deprivation on the refractive status of the monkey. Invest. Ophthalmol. vis. Sci. 28, 1236–1245 (1987).

    PubMed  Google Scholar 

  22. Wallman, J., Gottlieb, M.D., Rajaram, V. & Fugate-Wentzek, L.A. Local retinal regions control local eye growth and myopia. Science 237, 73–77 (1987).

    Article  CAS  Google Scholar 

  23. Boothe, R., Dobson, V. & Teller, D. Postnatal development of vision in human and nonhuman primates. Annu. Rev. Neurosci. 8, 495–545 (1985).

    Article  CAS  Google Scholar 

  24. Kiely, P.M. et al. A comparison of ocular development of the cynomolgus monkey and man. Clin. vis. Sci. 1, 269–280 (1987).

    Google Scholar 

  25. Gwiazda, J., Thorn, F., Bauer, J. & Held, R. Emmetropization and the progression of manifest refraction in children followed from infancy to puberty. Clin. vis. Sci. 8, 337–344 (1993).

    Google Scholar 

  26. Medina, A. A model for emmetropization: The effect of corrective lenses. Acta. Opthalmol. 65, 565–571 (1987).

    Article  CAS  Google Scholar 

  27. Medina, A. A model for emmetropization: Predicting the progression of ametropia. Ophthalmologica 194, 133–139 (1987).

    Article  CAS  Google Scholar 

  28. Ingram, R.M., Arnold, P.E., Dally, S. & Lucas, J. tion, squint, and reduced visual acuity after treatment. Br. J. Ophthalmol. 75, 414–416 (1991).

    Article  CAS  Google Scholar 

  29. Atkinson, J. Infant vision screening: Prediction and prevention of strabismus and amblyopia from refractive screening in the Cambridge Photorefraction Program. in Early Visual Development, Normal and Abnormal (ed. Simons, K.) 335–348 (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  30. Crawford, M.L.J. & von Noorden, G.K. Concomitant strabismus and cortical eye dominance in young rhesus monkeys. Trans. Ophthalmol. Soc. U.K. 99, 369–374 (1979).

    CAS  PubMed  Google Scholar 

  31. Schaeffel, F., Farkas, L. & Howland, H.C. Infrared photoretinoscopy. Appl. Opt. 26, 1505–1509 (1987).

    Article  CAS  Google Scholar 

  32. Howland, H.C. Optics of photoretinoscopy: Results from ray tracing. Am. J. Optom. Physiol. Optics 62, 621–625 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, LF., Crawford, M. & Smith, E. Spectacle lenses alter eye growth and the refractive status of young monkeys. Nat Med 1, 761–765 (1995). https://doi.org/10.1038/nm0895-761

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0895-761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing