Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate

Abstract

High concentrations of nitrite present in saliva (derived from dietary nitrate) may, upon acidification, generate nitrogen oxides in the stomach in sufficient amounts to provide protection from swallowed pathogens. We now show that, in the rat, reduction of nitrate to nitrite is confined to a specialized area on the posterior surface of the tongue, which is heavily colonized by bacteria, and that nitrate reduction is absent in germ-free rats. We also show that in humans increased salivary nitrite production resulting from nitrate intake enhances oral nitric oxide production. We propose that the salivary generation of nitrite is accomplished by a symbiotic relationship involving nitrate-reducing bacteria on the tongue surface, which is designed to provide host defence against microbial pathogens in the mouth and lower gut. These results provide further evidence for beneficial effects of dietary nitrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Forman, D., Al-Dabbagh, S. & Doll, R. Nitrates, nitrites and gastric cancer in Great Britain. Nature 313, 620–625 (1985).

    Article  CAS  Google Scholar 

  2. Knight, T.M. et al. Nitrate and nitrite exposure in Italian populations with different gastric cancer rates. Int. J. Epidemiol. 19, 510–515 (1990).

    Article  CAS  Google Scholar 

  3. Sugimura, T., Fujimura, S. & Baba, T. Tumour production in the glandular stomach of the rat by N-methyl-N′-nitro-N-nitrosoguanidine. Cancer Res. 30, 455–465 (1970).

    CAS  PubMed  Google Scholar 

  4. Hegesh, E. & Shiloah, J. Blood nitrates and infantile methaemoglobinaemia. Clin. Chim. Acta 125, 107–115 (1982).

    Article  CAS  Google Scholar 

  5. Tannenbaum, S.R., Weisman, M. & Fett, D. The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet. Toxicol. 14, 549–552 (1976).

    Article  CAS  Google Scholar 

  6. Spiegelhalder, B., Eisenbrand, G. & Preussmann, R. Influence of dietary nitrate on nitrite content of human saliva: Possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 14, 545–548 (1976).

    Article  CAS  Google Scholar 

  7. Ishiwata, H., Tanimura, A. & Ishidate, M. Studies on in vivo formation of nitroso compounds: Nitrite and nitrate concentrations in human saliva collected from salivary ducts. J. Food Hyg. Soc. Jap. 16, 89–92 (1975).

    Article  CAS  Google Scholar 

  8. Sasaki, T. & Matano, K. Formation of nitrite from nitrate at the dorsum linguae. J. Food. Hyg. Soc. lap. 20, 363–369 (1979).

    Article  CAS  Google Scholar 

  9. Haddock, B.A. & Jones, C.W. Bacterial respiration. Bacterial. Rev. 41, 47–99 (1977).

    CAS  Google Scholar 

  10. Benjamin, N. et al. Stomach NO synthesis. Nature 368, 502 (1994).

    Article  CAS  Google Scholar 

  11. Klebanoff, S.J. Reactive nitrogen intermediates and antimicrobial activity: Role of nitrite. Free Radical Biol. Med. 14, 351–360 (1993).

    Article  CAS  Google Scholar 

  12. Mancinelli, R.L. & McKay, C.P. Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl. Environ. Microbiol. 46, 198–202 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lundberg, J.O.N., Weitzberg, E., Lundberg, J.M. & Alving, K. Intragastric nitric oxide production in humans: Measurements in expelled air. Gut 35, 1543–1546 (1994).

    Article  CAS  Google Scholar 

  14. Dougall, H., Smith, L., Duncan, C. & Benjamin, N. The effect of a broad spectrum antibiotic on salivary nitrite concentrations: An important mechanism of adverse reactions? Br. J. clin. Pharmac. 39, 460–462 (1995).

    Article  CAS  Google Scholar 

  15. Gunsalus, R.P. Control of electron flow in Escherichia coli: Coordinated transcription of respiratory pathway genes. J. Bacterial. 174, 7069–7074 (1992).

    Article  CAS  Google Scholar 

  16. Reddy, D., Lancaster, J.R. & Cornforth, D.P. Nitrite inhibition of Clostridium botulinum: Electron spin resonance detection of iron-nitric oxide complexes. Science 221, 769–770 (1983).

    Article  CAS  Google Scholar 

  17. Wink, D.A. et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254, 1001–1003 (1991).

    Article  CAS  Google Scholar 

  18. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A. & Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. natn. Acad. Sci. U.S.A. 87, 1620–1624 (1990).

    Article  CAS  Google Scholar 

  19. Hogg, N., Darley-Usmar, V.M., Wilson, M.T. & Moncada, S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem. J. 281, 419–424 (1992).

    Article  CAS  Google Scholar 

  20. Williams, D.H.L. Nitrosation (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  21. Neal, K.R., Brij, S.O., Slack, R.C.B., Hawkey, C.J. & Logan, R.F.A. Recent treatment with H2 antagonists and antibiotics and gastric surgery as risk factors for salmonella infection. Br. Med. J. 308, 176 (1994).

    Article  CAS  Google Scholar 

  22. Whittle, B.J.R., Lopez-Belmonte, J. & Moncada, S. Regulation of gastric mucosal integrity by endogenous nitric oxide: Interactions with prostanoids and sensory neuropeptides in the rat. Br. J. Pharmac. 99, 607–611 (1989).

    Article  Google Scholar 

  23. Desai, K.M., Sessa, W.C. & Vane, J.R. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature 351, 477–479 (1991).

    Article  CAS  Google Scholar 

  24. Jensen, M.E. & Wefel, J.S. Human plaque pH responses to meals and the effects of chewing gum. Br. Dental. J. 167, 204–208 (1989).

    Article  CAS  Google Scholar 

  25. Walker, A.M., Jick, H. & Porter, J. Drug-related superinfection in hospitalized patients. JAMA 242, 1273–1275 (1979).

    Article  CAS  Google Scholar 

  26. Caldwell, J.R. & Cluff, L.E. Adverse reactions to antimicrobial agents. JAMA 230, 77–80 (1974).

    Article  CAS  Google Scholar 

  27. Wennerholm, K. et al. Effect of xylitol and sorbitol in chewing-gums on mutans streptococci, plaque pH and mineral loss of enamel. Caries Res. 28, 48–54 (1994).

    Article  CAS  Google Scholar 

  28. Braun, C. & Zumft, W.G. Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J. biol. Chem. 266, 22785–22788 (1991).

    CAS  PubMed  Google Scholar 

  29. Bodis, S. & Haregewoin, A. Evidence for the release and possible neural regulation of nitric oxide in human saliva. Biochem. biophys. Res. Commun. 194, 347–350 (1993).

    Article  CAS  Google Scholar 

  30. Edwards, D.A.W., Fletcher, K. & Rowlands, E.N. Antagonism between perchlorate, iodide, thiocyanate, and nitrate for secretion in human saliva. Lancet 498–499 (1954).

  31. Sobala, G.M. et al. Ascorbic acid in the human stomach. Gastroenterology 97, 357–363 (1989).

    Article  CAS  Google Scholar 

  32. Ministry of Agriculture Fisheries and Food. Food surveillance paper No. 20: Nitrate, nitrite and N-nitroso compounds in food. 7 (HMSO Books, London, 1987).

  33. Ruddell, W.S.J., Blendis, L.M. & Walters, C.L. Nitrite and thiocyanate in gastric juice. Gut 17, 401 (1976).

    CAS  PubMed  Google Scholar 

  34. Tannenbaum, S.R., Sinskey, A.J. & Bishop, W. Nitrite in human saliva: Its possible relationship to nitrosamine formation. J. natn. Cancer Inst. 53, 79–84 (1974).

    Article  CAS  Google Scholar 

  35. Donahoe, W.E. Cyanosis in infants with nitrates in drinking water as a cause. Paediatrics 3, 308–311 (1949).

    CAS  Google Scholar 

  36. Rider, B.F. & Mellon, M.G. Colorimetric determination of nitrites. Ind. Engng Chem. 18, 96–99 (1946).

    CAS  Google Scholar 

  37. Stevens, A. Gram Method. in Theory and Practice of Histological Techniques (eds Bancroft, J.D. & Stevens, A.) 290–293 (Churchill Livingstone, London, 1990).

    Google Scholar 

  38. Gundersen, J.G. Notes on the estimation of the numerical density of arbitrary profiles. J. Microsc. 111, 219–223 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, C., Dougall, H., Johnston, P. et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med 1, 546–551 (1995). https://doi.org/10.1038/nm0695-546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0695-546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing