Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regional changes of ciliary neurotrophic factor and nerve growth factor levels in post mortem spinal cord and cerebral cortex from patients with motor disease

Abstract

Ciliary neurotrophic factor (CNTF) rescues motor neurons in animal models of injury and neurodegeneration, and disruption of the mouse CNTF gene results in motor neuron degeneration in mature adults. Glial cells increase nerve growth factor (NGF) expression in neuropathological conditions, and the sensory system can be affected in the amyotrophic lateral sclerosis (ALS) type of motor neuronic disease. We therefore studied CNTF and NGF levels in post mortem spinal cord and cerebral cortex from patients with ALS and matched controls. We report a marked decrease of CNTF in the ventral horn of spinal cord in ALS, with no change in cerebral motor cortex. In contrast, NGF levels were decreased in ALS cerebral motor cortex, where the corticospinal tract originates, but increased in the lateral column of spinal cord, which includes the region of corticospinal tract degeneration in ALS. Both CNTF and NGF levels were decreased in ALS dorsal spinal cord.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tandan, R., & Bradley, W.G Amyotrophic lateral sclerosis: Clinical features, pathology and ethical issues in management. Ann. Neurol. 18 271–280 (1985).

    Article  CAS  Google Scholar 

  2. Hughes, J Pathology of amyotrophic lateral sclerosis. Adv. Neurol. 36 61–73 (1982).

    CAS  PubMed  Google Scholar 

  3. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362 59–62 (1993).

    Article  CAS  Google Scholar 

  4. Manthorpe, M., Louis, J.-C., Hagg, T. & Varon, S. Ciliary neu-ronotrophic factor. In: Neurotrophic Factors (eds Loughlin S.E. & Fallen J.H.) 443–474, (Academic Press, San Diego, 1993).

    Google Scholar 

  5. Ip, N.Y. et al. The alpha component of the CNTF receptor is required for signalling and defines potential CNTF targets in the adult and during development. Neuron 10 89–102 (1993).

    Article  CAS  Google Scholar 

  6. Mitsumoto, H. et al. Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265 1107–1110 (1994).

    Article  CAS  Google Scholar 

  7. Sendtner, M., Kreutzberg, G.W., Thoenen, H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345 440–441 (1990).

    Article  CAS  Google Scholar 

  8. Oppenheim, R.W., Prevette, D., Qin-Wei, Y., Collins, F., & MacDonald, J. Control of embryonic motor neuron survival in vivo by ciliary neurotrophic factor. Science 251 1616–1618 (1991).

    Article  CAS  Google Scholar 

  9. Sendtner, M. et al. neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358 502–504 (1992).

    Article  CAS  Google Scholar 

  10. Mitsumoto, H. et al. The effects of ciliary neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann. Neurol 36 142–148 (1994).

    Article  CAS  Google Scholar 

  11. Helgren, M.E. et al. Trophic effect of ciliary neurotrophic factor on den-ervated muscle. Cell 76 493–504 (1994).

    Article  CAS  Google Scholar 

  12. Gurney, M.E., Yamamoto, H., & Kwon, Y. Induction of motor neuron sprouting in vivo by ciliary neurotrophic factor and basic fibroblast growth factor. J. Neurosci. 12 3241–3247 (1992).

    Article  CAS  Google Scholar 

  13. Curtis, R. et al. Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury. Nature 365 253–255 (1993).

    Article  CAS  Google Scholar 

  14. Ip, N.Y., Wiegand, S.J., Morse, J., Rudge, J.S Injury-induced regulation of CNTF mRNA in the adult rat brain. Eur. J. Neurosci. 5 25–33 (1993).

    Article  CAS  Google Scholar 

  15. Masu, Y. et al. Disruption of the CNTF gene results in motor neuron degeneration. Nature 365 27–32 (1993).

    Article  CAS  Google Scholar 

  16. Takahashi, R. et al. A null mutation in the human CNTF gene is not causally related to neurological diseases. Nature Genet 7 79–84 (1994).

    Article  CAS  Google Scholar 

  17. Dyck, P.J., Stevens, J.C., Mulder, D.W., & Espinosa, R.E. Frequency of nerve fibre degeneration of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. Neurology 25 781–785 (1975).

    Article  CAS  Google Scholar 

  18. Gregory, R., Mills, K., Donaghy, & M. Progressive sensory dysfunction in amyotrophic lateral sclerosis. J. Neurol. 240 309–314 (1993).

    Article  CAS  Google Scholar 

  19. Fernandez, E. et al. Spinal cord transection in adult rats: Effect of local infusion of nerve growth factor on the corticospinal tract axons. Neuro-surgery 33 889–893 (1993).

    CAS  Google Scholar 

  20. Swash, M., Scholtz, C.L., Vowles, G., & Ingram, D. Selective and asymmetric vulnerability of corticospinal and spinocerebellar tracts in motor neuron disease. J. Neurol. Neurosurg. Psychiat. 51 785–789 (1988).

    Article  CAS  Google Scholar 

  21. Davidson, C.D. Amyotrophic lateral sclerosis: Origin and extent of the upper motor neuron lesion. Arch. Neurol. 46 1039–1056 (1941).

    Article  Google Scholar 

  22. Stockli, K.A. et al. Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342 920–923 (1989).

    Article  CAS  Google Scholar 

  23. Rende, M. et al. Immunolocalisation of ciliary neuronotrophic factor in adult rat sciatic nerve. Glia 5 25–32 (1992).

    Article  CAS  Google Scholar 

  24. Stockli, K.A. et al. Regional distribution, developmental changes, and cellular localisation of CNTF-mRNA and protein in the rat brain. Cell Biol. 115 447–459 (1991).

    Article  CAS  Google Scholar 

  25. Friedmann, B. et al. Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo . Neuron 9 295–305 (1992).

    Article  Google Scholar 

  26. Heumann, R., Korsching, S., Bandtlow, C., Thoenen, H. Changes of nerve growth factor synthesis in non-neuronal cells in response to sciatic nerve transection. J. Cell Biol. 104 1623–1631 (1987).

    Article  CAS  Google Scholar 

  27. Bakhit, C., Armanini, M., Wong, W.L., Bennett, G.L., & Wrathall, J.R. Increase in nerve growth factor-like immunoreactivity and decrease in choline acetyltransferase following contusive spinal cord injury. Brain Res. 554 264–271 (1991).

    Article  CAS  Google Scholar 

  28. Altar, C.A. et al. Recovery of cholinergic phenotype in the injured rat neostriatum: Role for endogenous and exogenous nerve growth factor. J. Neurochem. 59 2167–2177 (1992).

    Article  CAS  Google Scholar 

  29. Lorez, H., Keller, F., Ruess, G., & Otten, U. Nerve growth factor increases in adult rat brain after hypoxic injury. Neurosci Lett. 98 339–344 (1989).

    Article  CAS  Google Scholar 

  30. Magal, E., Louis, J.C., Oudega, M., & Varon, S. CNTF promotes the survival of neonatal rat corticospinal neurons in vitro . Neuroreport 4 779–782 (1993).

    Article  CAS  Google Scholar 

  31. Anand, P. et al. A VIP containing system concentrated in the lum-bosacral region of human spinal cord. Nature 305 143–145 (1983).

    Article  CAS  Google Scholar 

  32. Malessa, S., Leigh, P.N., Bertel, O., Sluga, E., & Hornykiewicz, O Amyotrophic lateral sclerosis: Glutamate dehydrogenase and transmitter amino acids in the spinal cord. J. Neurol. Neurosurg. Psychiat. 54 984–988 (1991).

    Article  CAS  Google Scholar 

  33. Ikeda, K. et al. Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann. Neurol, in the press.

  34. Wong, V, Arriaga, R, Ip, N.Y., Lindsay, R.M. The neurotrophins BDNF, NT-3 and NT-4/5, but not NGF, up-regulate the cholinergic phenotype of developing motor neurons. Eur. J. Neurosci. 5 466–474 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, P., Parrett, A., Martin, J. et al. Regional changes of ciliary neurotrophic factor and nerve growth factor levels in post mortem spinal cord and cerebral cortex from patients with motor disease. Nat Med 1, 168–172 (1995). https://doi.org/10.1038/nm0295-168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0295-168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing