Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The paternal inheritance of the centrosome, the cell's microtubule-organizing center, in humans, and the implications for infertility

Abstract

Successful fertilization in humans, achieved when parental chromosomes intermix at first mitosis, requires centrosome restoration and microtubule-mediated motility. Imaging of inseminated human oocytes reveals that the sperm introduces the centrosome. The centrosome then nucleates the new microtubule assembly to form the sperm aster — a step essential for successful fertilization. Oocytes from some infertile patients failed to complete fertilization because of defects in uniting the sperm and egg nuclei, indicating that failure to properly effect the cytoplasmic motions uniting the nuclei results in human infertility. These discoveries have important implications for infertility diagnosis and managing reproduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schatten, G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Develop Biol 165, 299–335 (1994).

    Article  CAS  Google Scholar 

  2. Boveri, T. Zellen-Studien: Ueber die Natur der Centrosomen. IV. (Jena, Germany, 1901).

    Google Scholar 

  3. Wilson, E.B. The Cell in Development and Heredity, (Macmillan, New York, 1925).

    Google Scholar 

  4. Mazia, D. The chromosome cycle and the centrosome cycle in the mitotic cycle. Int. rev. Cytol. 100, 49–92 (1987).

    Article  CAS  Google Scholar 

  5. Longo, F.J. Sperm aster in rabbit zygotes: Its structure and function. J. Cell Biol. 69, 539–547 (1976).

    Article  CAS  Google Scholar 

  6. Le Guen, P. & Crozet, N. Microtubule and centrosome distribution during sheep fertilization. Eur. J. Cell Biol. 48, 239–249 (1989).

    CAS  PubMed  Google Scholar 

  7. Long, C.R. et al. Chromatin and microtubule morphology during the first cell cycle in bovine zygotes. Molec. Repro. Develop. 36, 23–32 (1993).

    Article  CAS  Google Scholar 

  8. Yllera-Fernandez, M.D.M., Crozet, N. & Ahmed-Ali, M. Microtubule distribution during fertilization in the rabbit. Mol. Reprod. Dev. 32, 271–276 (1992).

    Article  CAS  Google Scholar 

  9. Navara, C., First, N. & Schatten, G. Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis and nuclear transfer: The role of the sperm aster. Dev. Biol 162, 29–40 (1994).

    Article  CAS  Google Scholar 

  10. Breed, W., Simerly, C., Navara, C., Vanderberg, J. & Schatten, G. Distribution of microtubules in eggs and early embryos of marsupial, Monodelphis domestica. Dev. Biol. B, 230–240 (1994).

    Article  Google Scholar 

  11. Schatten, G., Simerly, C. & Schatten, H. Microtubule configurations during fertilization, mitosis and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc. Natn. Acad. Sci. U.S.A. 82, 4152–4156 (1985).

    Article  CAS  Google Scholar 

  12. Maro, B., Howlett, S.K. & Webb, M. Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J. Cell Biol. 101, 1665–1672 (1985).

    Article  CAS  Google Scholar 

  13. Schatten, H., Schatten, G., Mazia, D., Balczon, R. & Simerly, C. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc. Natn. Acad. Sci. U.S.A 83, 105–109 (1986).

    Article  CAS  Google Scholar 

  14. Sathananthan, A.H. et al. Centrioles in the beginning of human development. Proc. Natn. Acad. Sci. U.S.A 88, 4806–4810 (1991).

    Article  CAS  Google Scholar 

  15. Wheatley, D.N. The Centriole: a Central Enigma of Cell Biology. (Elsevier, 1982).

    Google Scholar 

  16. Szöllösi, D. & Ozil, J.P. De novo formation of centrioles in parthenogenetically activated diploidized rabbit embryos. Biol. Cell. 72, 61–66 (1991).

    Article  Google Scholar 

  17. Pickering, S.J., Johnson, M.H., Braude, P.R. & Houliston, E. Cytoskeletal organization in fresh, aged, and spontaneously activated human oocytes. Human Repro. 3, 978–989 (1988).

    Article  CAS  Google Scholar 

  18. Schatten, H., Simerly, C., Maul, G. & Schatten, G. Microtubule assembly is required for the formation of the pronuclei, nuclear lamin acquisition, and DNA synthesis during mouse, but not sea urchin, fertilization. Gamete Res. 23, 309–322 (1989).

    Article  CAS  Google Scholar 

  19. Palermo, G., Munné, S. & Cohen, J. The human zygote inherits its mitotic potential from the male gamete. Human Reprod. 9, 1220–1225 (1994).

    Article  CAS  Google Scholar 

  20. Winston, N., Johnson, M., Pickering, S. & Braude, P. Parthenogenetic activation and development of fresh and aged human oocytes. Fert. Steril. 56, 904–912 (1991).

    Article  CAS  Google Scholar 

  21. Hill, D.P., Shakes, D.C., Ward, S. & Strome, S. A sperm-supplied product essential for initiation of normal embryogenesis in Caenorhabditis elegans is encoded by the paternal-effect embryonic-lethal gene, spe-11. Dev. Biol. 136, 154–166 (1993).

    Article  Google Scholar 

  22. Fukui, Y., Glew, A.M., Gandolfi, F. & Moor, R.M. Ram-specific effects on in vitro fertilization and cleavage of sheep oocytes matured in vitro. J. Reprod. Fert. 82, 337–340 (1988).

    Article  CAS  Google Scholar 

  23. Rose, M.D., Biggins, S. & Satterwhite, L.L. Unravelling the tangle web, at the microtubule-organizing center. Curr. Opin. Cell Biol 5, 105–115 (1993).

    Article  CAS  Google Scholar 

  24. Kimble, M. & Kuriyama, R. Functional component of microtuble-organizing centers. Int. Rev. Cytol. 136, 1–50 (1992).

    Article  CAS  Google Scholar 

  25. Stearns, T., Evans, L. & Kirschner, M. g-Tubulin is a highly conserved component of the centrosome. Cell 65, 825–836 (1991).

    Article  CAS  Google Scholar 

  26. Zheng, Y., Jung, M.K. & Oakley, B.R. g-Tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65, 817–823 (1991).

    Article  CAS  Google Scholar 

  27. Palacios, M.J., Joshi, H.C., Simerly, C. & Schatten, G. g-tublin during early mouse development. J. Cell Sci. 104, 383–389 (1993).

    CAS  PubMed  Google Scholar 

  28. Stearns, T. & Kirschner, M. in vitro reconstitution of centrosome assembly and function: the central role of g-tubulin. Cell 76, 623–637 (1994).

    Article  CAS  Google Scholar 

  29. Doxsey, S.J., Stein, P., Evans, L., Calarco, P.D. & Kirschner, M. Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell 76, 639–650 (1994).

    Article  CAS  Google Scholar 

  30. Félix, M.-A., Antony, C., Wright, M. & Maro, B. Centrosome assembly in vitro. J. Cell Biol. 124, 19–31 (1994).

    Article  Google Scholar 

  31. Archer, J. & Solomon, F. Deconstructing the microtubule-organizing center. Cell 76, 589–591 (1994).

    Article  CAS  Google Scholar 

  32. Van Steerteshem, A.C. et al., High fertilization and implantation rates after intracytoplasmic sperm injection. Human Reprod. 8, 1061–1066 (1993).

    Article  Google Scholar 

  33. Brinkley, B.R. Microtubule organizing centers. Ann. Rev. Cell Biol. 1, 147–172 (1985).

    Article  Google Scholar 

  34. Borrero, C. et al. A program of oocyte donation and GIFT. Hum Reprod. 4, 275–279 (1989).

    Article  CAS  Google Scholar 

  35. Simerly, C. & Schatten, G. Techniques for localization of specific molecules in oocytes and embryos. Methods in Enz. 225, 516–552 (1993).

    CAS  Google Scholar 

  36. Piperno, G. and Fuller, M. T. Monoclonal antibodies specific for an acetylated form of a-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J. Cell Biol. 101, 2085–2095 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simerly, C., Wu, GJ., Zoran, S. et al. The paternal inheritance of the centrosome, the cell's microtubule-organizing center, in humans, and the implications for infertility. Nat Med 1, 47–52 (1995). https://doi.org/10.1038/nm0195-47

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0195-47

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing