Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization

Abstract

Inhalation of silica crystals causes inflammation in the alveolar space. Prolonged exposure to silica can lead to the development of silicosis, an irreversible, fibrotic pulmonary disease. The mechanisms by which silica and other crystals activate immune cells are not well understood. Here we demonstrate that silica and aluminum salt crystals activated inflammasomes formed by the cytoplasmic receptor NALP3. NALP3 activation required phagocytosis of crystals, and this uptake subsequently led to lysosomal damage and rupture. 'Sterile' lysosomal damage (without crystals) also induced NALP3 activation, and inhibition of either phagosomal acidification or cathepsin B activity impaired NALP3 activation. Our results indicate that the NALP3 inflammasome senses lysosomal damage as an endogenous 'danger' signal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Silica induction of the release of mature IL–1β and activated caspase-1 by human PBMCs is caspase-1 dependent.
Figure 2: Silica-mediated neutrophil influx in a model of acute lung inflammation is mediated by IL-1.
Figure 3: Silica-mediated release of matured IL-1β and activated caspase-1 is mediated by the NALP3 inflammasome.
Figure 4: Inflammasome activation requires phagosomal uptake of crystals but is independent of the phagosomal reactive oxygen species system.
Figure 5: Phagocytosis of crystals leads to lysosomal destabilization.
Figure 6: Silica-mediated IL-1β production is partially dependent on cathepsin B.
Figure 7: Alum activates the NALP3 inflammasome through lysosomal destabilization.
Figure 8: Rupture of 'sterile' lysosomes activates the NALP3 inflammasome.

Similar content being viewed by others

References

  1. Mossman, B.T. & Churg, A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med. 157, 1666–1680 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Huaux, F. New developments in the understanding of immunology in silicosis. Curr. Opin. Allergy Clin. Immunol. 7, 168–173 (2007).

    Article  PubMed  Google Scholar 

  3. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Petrilli, V., Dostert, C., Muruve, D.A. & Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19, 615–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Dinarello, C.A. Interleukin-1β, interleukin-18, and the interleukin-1β converting enzyme. Ann. NY Acad. Sci. 856, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Muruve, D.A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 13766–13771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown, G.D. et al. Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med. 196, 407–412 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanneganti, T.D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Fubini, B. & Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34, 1507–1516 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Pollock, J.D. et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9, 202–209 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Buttle, D.J., Murata, M., Knight, C.G. & Barrett, A.J. CA074 methyl ester: a proinhibitor for intracellular cathepsin B. Arch. Biochem. Biophys. 299, 377–380 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Li, H., Nookala, S. & Re, F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. J. Immunol. 178, 5271–5276 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Thiele, D.L. & Lipsky, P.E. Regulation of cellular function by products of lysosomal enzyme activity: elimination of human natural killer cells by a dipeptide methyl ester generated from l-leucine methyl ester by monocytes or polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 82, 2468–2472 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thiele, D.L. & Lipsky, P.E. Mechanism of l-leucyl-l-leucine methyl ester-mediated killing of cytotoxic lymphocytes: dependence on a lysosomal thiol protease, dipeptidyl peptidase I, that is enriched in these cells. Proc. Natl. Acad. Sci. USA 87, 83–87 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 230, 647–677 (2008).

    Google Scholar 

  21. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanneganti, T.D. et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26, 433–443 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Marina-Garcia, N. et al. Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 Activation via cryopyrin/NLRP3 independently of Nod2. J. Immunol. 180, 4050–4057 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Franchi, L., Kanneganti, T.D., Dubyak, G.R. & Nunez, G. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J. Biol. Chem. 282, 18810–18818 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Cain, K., Bratton, S.B. & Cohen, G.M. The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84, 203–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Karki, P. et al. Intracellular K+ inhibits apoptosis by suppressing the Apaf-1 apoptosome formation and subsequent downstream pathways but not cytochrome c release. Cell Death Differ. 14, 2068–2075 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Hentze, H., Lin, X.Y., Choi, M.S. & Porter, A.G. Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ. 10, 956–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pelegrin, P. & Surprenant, A. Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1β release through a dye uptake-independent pathway. J. Biol. Chem. 282, 2386–2394 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Fujisawa, A. et al. Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood 109, 2903–2911 (2007).

    CAS  PubMed  Google Scholar 

  33. Willingham, S.B. et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2, 147–159 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Asagiri, M. et al. Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science 319, 624–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5, 190–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Latz, E. et al. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat. Immunol. 8, 772–779 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Schiltz, C. et al. Monosodium urate monohydrate crystal-induced inflammation in vivo: quantitative histomorphometric analysis of cellular events. Arthritis Rheum. 46, 1643–1650 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Severa, M., Coccia, E.M. & Fitzgerald, K.A. Toll-like receptor-dependent and -independent viperin gene expression and counter-regulation by PRDI-binding factor-1/BLIMP1. J. Biol. Chem. 281, 26188–26195 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Roberson, S.M. & Walker, W.S. Immortalization of cloned mouse splenic macrophages with a retrovirus containing the v-raf/mil and v-myc oncogenes. Cell. Immunol. 116, 341–351 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MyD88-deficient and TRIF-deficient mice were provided by S. Akira (Osaka University). We thank A. Cerny and Joseph Boulanger for animal husbandry and genotyping; D. Kalvakolanu (University of Maryland School of Medicine) for providing J2 recombinant retroviruses; and J. Lee and H. Kornfeld for help with the lung inflammation model. Supported by the Deutsche Forschungsgemeinschaft (Ho2783/2-1 to V.H. and GK1202 to F.B.) and the US National Institutes of Health (R01 AI-065483 to E.L., RO1 AI-067497 to K.A.F. and RO1 AI043543 to K.L.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eicke Latz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornung, V., Bauernfeind, F., Halle, A. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9, 847–856 (2008). https://doi.org/10.1038/ni.1631

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing