Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Natural killer cell–directed therapies: moving from unexpected results to successful strategies

Abstract

Natural killer (NK) cells influence innate and adaptive immune host defenses. Existing data indicate that manipulating the balance between inhibitory and activating NK receptor signals, the sensitivity of target cells to NK cell-mediated apoptosis, and NK cell cross-talk with dendritic cells might hold therapeutic promise. Efforts to modulate NK cell trafficking into inflamed tissues and/or lymph nodes, and to counteract NK cell suppressors, might also prove fruitful in the clinic. However, deeper investigation into the benefits of combination therapy, greater understanding of the functional distinctions between NK cell subsets, and design of new tools to monitor NK cell activity are needed to strengthen our ability to harness the power of NK cells for therapeutic aims.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies to harness NK cell functions in cancer.

Similar content being viewed by others

References

  1. Herberman, R.B., Nunn, M.E., Holden, H.T. & Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 16, 230–239 (1975).

    CAS  PubMed  Google Scholar 

  2. Long, E.O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    CAS  PubMed  Google Scholar 

  3. Orange, J.S. & Ballas, Z.K. Natural killer cells in human health and disease. Clin. Immunol. 118, 1–10 (2006).

    CAS  PubMed  Google Scholar 

  4. Moretta, L. & Moretta, A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J. 23, 255–259 (2004).

    CAS  PubMed  Google Scholar 

  5. Cerwenka, A. & Lanier, L.L. Ligands for natural killer cell receptors: redundancy or specificity. Immunol. Rev. 181, 158–169 (2001).

    CAS  PubMed  Google Scholar 

  6. Hayakawa, Y., Huntington, N.D., Nutt, S.L. & Smyth, M.J. Functional subsets of mouse natural killer cells. Immunol. Rev. 214, 47–55 (2006).

    CAS  PubMed  Google Scholar 

  7. Walzer, T. et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. USA 104, 3384–3389 (2007).

    CAS  PubMed  Google Scholar 

  8. Albertsson, P.A. et al. NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol. 24, 603–609 (2003).

    CAS  PubMed  Google Scholar 

  9. Kim, S., Iizuka, K., Aguila, H.L., Weissman, I.L. & Yokoyama, W.M. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc. Natl. Acad. Sci. USA 97, 2731–2736 (2000).

    CAS  PubMed  Google Scholar 

  10. Coca, S. et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79, 2320–2328 (1997).

    CAS  PubMed  Google Scholar 

  11. Chang, C.C., Campoli, M. & Ferrone, S. Classical and nonclassical HLA class I antigen and NK cell-activating ligand changes in malignant cells: current challenges and future directions. Adv. Cancer Res. 93, 189–234 (2005).

    CAS  PubMed  Google Scholar 

  12. Gasser, S., Orsulic, S., Brown, E.J. & Raulet, D.H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smyth, M.J. et al. NKG2D function protects the host from tumor initiation. J. Exp. Med. 202, 583–588 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vetter, C.S., Lieb, W., Brocker, E.B. & Becker, J.C. Loss of nonclassical MHC molecules MIC-A/B expression during progression of uveal melanoma. Br. J. Cancer 91, 1495–1499 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    CAS  PubMed  Google Scholar 

  17. Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356, 1795–1799 (2000).

    CAS  PubMed  Google Scholar 

  18. Hayashi, T. et al. Identification of the NKG2D haplotypes associated with natural cytotoxic activity of peripheral blood lymphocytes and cancer immunosurveillance. Cancer Res. 66, 563–570 (2006).

    CAS  PubMed  Google Scholar 

  19. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sivori, S. et al. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J. Neuroimmunol. 107, 220–225 (2000).

    CAS  PubMed  Google Scholar 

  21. Fauriat, C. et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109, 323–330 (2007).

    CAS  PubMed  Google Scholar 

  22. Carrington, M. et al. Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci. J. Exp. Med. 201, 1069–1075 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lopez-Vazquez, A. et al. Protective effect of the HLA-Bw4I80 epitope and the killer cell immunoglobulin-like receptor 3DS1 gene against the development of hepatocellular carcinoma in patients with hepatitis C virus infection. J. Infect. Dis. 192, 162–165 (2005).

    CAS  PubMed  Google Scholar 

  24. Borg, C. et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J. Clin. Invest. 114, 379–388 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghiringhelli, F., Menard, C., Martin, F. & Zitvogel, L. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol. Rev. 214, 229–238 (2006).

    CAS  PubMed  Google Scholar 

  26. Orange, J.S. Human natural killer cell deficiencies. Curr. Opin. Allergy Clin. Immunol. 6, 399–409 (2006).

    PubMed  Google Scholar 

  27. Orange, J.S. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 4, 1545–1558 (2002).

    CAS  PubMed  Google Scholar 

  28. Bashirova, A.A., Martin, M.P., McVicar, D.W. & Carrington, M. The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Annu. Rev. Genomics Hum. Genet. 7, 277–300 (2006).

    CAS  PubMed  Google Scholar 

  29. Martin, M.P. et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Genet. 31, 429–434 (2002).

    CAS  PubMed  Google Scholar 

  30. Khakoo, S.I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004).

    CAS  PubMed  Google Scholar 

  31. Gumá, M. et al. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 107, 3624–3631 (2006).

    PubMed  Google Scholar 

  32. Hiby, S.E. et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200, 957–965 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hanna, J. et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 12, 1065–1074 (2006).

    CAS  PubMed  Google Scholar 

  34. Liu, R. et al. Autoreactive T cells mediate NK cell degeneration in autoimmune disease. J. Immunol. 176, 5247–5254 (2006).

    CAS  PubMed  Google Scholar 

  35. Zimmer, J., Bausinger, H. & de la Salle, H. Autoimmunity mediated by innate immune effector cells. Trends Immunol. 22, 300–301 (2001).

    CAS  PubMed  Google Scholar 

  36. Vollmer, T. et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 363, 1607–1608 (2004).

    CAS  PubMed  Google Scholar 

  37. Van Kaer, L. α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat. Rev. Immunol. 5, 31–42 (2005).

    CAS  PubMed  Google Scholar 

  38. Bielekova, B. et al. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl. Acad. Sci. USA 103, 5941–5946 (2006).

    CAS  PubMed  Google Scholar 

  39. Grimm, E.A., Mazumder, A., Zhang, H.Z. & Rosenberg, S.A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 155, 1823–1841 (1982).

    CAS  PubMed  Google Scholar 

  40. Rosenberg, S.A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985).

    CAS  PubMed  Google Scholar 

  41. Law, T.M. et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 76, 824–832 (1995).

    CAS  PubMed  Google Scholar 

  42. Lotze, M.T. & Rosenberg, S.A. Results of clinical trials with the administration of interleukin 2 and adoptive immunotherapy with activated cells in patients with cancer. Immunobiology 172, 420–437 (1986).

    CAS  PubMed  Google Scholar 

  43. Ueda, Y. et al. Clinical application of adoptive immunotherapy and IL-2 for the treatment of advanced digestive tract cancer. Hepatogastroenterology 46 (suppl. 1), 1274–1279 (1999).

    CAS  PubMed  Google Scholar 

  44. Burns, L.J. et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant. 32, 177–186 (2003).

    CAS  PubMed  Google Scholar 

  45. Kammula, U.S., White, D.E. & Rosenberg, S.A. Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer. Cancer 83, 797–805 (1998).

    CAS  PubMed  Google Scholar 

  46. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner. J. Exp. Med. 202, 1075–1085 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodella, L. et al. Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells. Br. J. Haematol. 115, 442–450 (2001).

    CAS  PubMed  Google Scholar 

  48. Smyth, M.J. et al. NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J. Exp. Med. 200, 1325–1335 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mortier, E. et al. Soluble interleukin-15 receptor α (IL-15Rα)-sushi as a selective and potent agonist of IL-15 action through IL-15Rβ/γ. Hyperagonist IL-15·IL-15Rα fusion proteins. J. Biol. Chem. 281, 1612–1619 (2006).

    CAS  PubMed  Google Scholar 

  50. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

    CAS  PubMed  Google Scholar 

  51. Giebel, S. et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 102, 814–819 (2003).

    CAS  PubMed  Google Scholar 

  52. Miller, J.S. et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood 109, 5058–5061 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Davies, S.M. et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor. Blood 100, 3825–3827 (2002).

    CAS  PubMed  Google Scholar 

  54. Farag, S.S. et al. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol. Blood Marrow Transplant. 12, 876–884 (2006).

    CAS  PubMed  Google Scholar 

  55. Aversa, F. et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med. 339, 1186–1193 (1998).

    CAS  PubMed  Google Scholar 

  56. Cooley, S. et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood 106, 4370–4376 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Passweg, J.R., Stern, M., Koehl, U., Uharek, L. & Tichelli, A. Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant. 35, 637–643 (2005).

    CAS  PubMed  Google Scholar 

  58. Passweg, J.R. et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 18, 1835–1838 (2004).

    CAS  PubMed  Google Scholar 

  59. Miller, J.S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    CAS  PubMed  Google Scholar 

  60. Klingemann, H.G. Natural killer cell-based immunotherapeutic strategies. Cytotherapy 7, 16–22 (2005).

    CAS  PubMed  Google Scholar 

  61. Delahaye, N.F., Barbier, M., Fumoux, F. & Rihet, P. Association analyses of NCR3 polymorphisms with P. falciparum mild malaria. Microbes Infect. 9, 160–166 (2007).

    CAS  PubMed  Google Scholar 

  62. Ljunggren, H.G. & Malmberg, K.J. Prospects for the use of NK cells in immunotherapy of human cancer. Nat. Rev. Immunol. 7, 329–339 (2007).

    CAS  PubMed  Google Scholar 

  63. Bryceson, Y.T., March, M.E., Ljunggren, H.G. & Long, E.O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Koh, C.Y. et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97, 3132–3137 (2001).

    CAS  PubMed  Google Scholar 

  65. Sheridan, C. First-in-class cancer therapeutic to stimulate natural killer cells. Nat. Biotechnol. 24, 597 (2006).

    CAS  PubMed  Google Scholar 

  66. Carter, P.J. Potent antibody therapeutics by design. Nat. Rev. Immunol. 6, 343–357 (2006).

    CAS  PubMed  Google Scholar 

  67. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754–758 (2002).

    CAS  PubMed  Google Scholar 

  68. Weng, W.K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    CAS  PubMed  Google Scholar 

  69. Khan, K.D. et al. A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin's lymphoma. Clin. Cancer Res. 12, 7046–7053 (2006).

    CAS  PubMed  Google Scholar 

  70. Shahied, L.S. et al. Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format. J. Biol. Chem. 279, 53907–53914 (2004).

    CAS  PubMed  Google Scholar 

  71. Uherek, C. et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 100, 1265–1273 (2002).

    CAS  PubMed  Google Scholar 

  72. Smyth, M.J. et al. Nature's TRAIL–on a path to cancer immunotherapy. Immunity 18, 1–6 (2003).

    CAS  PubMed  Google Scholar 

  73. Daniel, D. et al. Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood 110, 4037–4046 (2007).

    CAS  PubMed  Google Scholar 

  74. Taieb, J. et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nat. Med. 12, 214–219 (2006).

    CAS  PubMed  Google Scholar 

  75. Vosshenrich, C.A. et al. CD11cloB220+ interferon-producing killer dendritic cells are activated natural killer cells. J. Exp. Med. 204, 2569–2578 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Blasius, A.L., Barchet, W., Cella, M. & Colonna, M. Development and function of murine B220+CD11c+NK1.1+ cells identify them as a subset of NK cells. J. Exp. Med. 204, 2561–2568 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Caminschi, I. et al. Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. J. Exp. Med. 204, 2579–2590 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chan, C.W. et al. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat. Med. 12, 207–213 (2006).

    CAS  PubMed  Google Scholar 

  79. Bonmort, M. et al. Interferon-γ is produced by another player of innate immune responses: the interferon-producing killer dendritic cell (IKDC). Biochimie 89, 872–877 (2007).

    CAS  PubMed  Google Scholar 

  80. Mailliard, R.B. et al. α-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 64, 5934–5937 (2004).

    CAS  PubMed  Google Scholar 

  81. Osada, T., Clay, T., Hobeika, A., Lyerly, H.K. & Morse, M.A. NK cell activation by dendritic cell vaccine: a mechanism of action for clinical activity. Cancer Immunol. Immunother. 55, 1122–1131 (2006).

    PubMed  Google Scholar 

  82. Andre, F. et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol. 172, 2126–2136 (2004).

    CAS  PubMed  Google Scholar 

  83. Chaput, N. et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J. Immunol. 172, 2137–2146 (2004).

    CAS  PubMed  Google Scholar 

  84. Taieb, J. et al. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J. Immunol. 176, 2722–2729 (2006).

    CAS  PubMed  Google Scholar 

  85. Chaput, N. et al. Dendritic cell derived-exosomes: biology and clinical implementations. J. Leukoc. Biol. 80, 471–478 (2006).

    CAS  PubMed  Google Scholar 

  86. Pilla, L. et al. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer Immunol. Immunother. 55, 958–968 (2006).

    CAS  PubMed  Google Scholar 

  87. Sivori, S. et al. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc. Natl. Acad. Sci. USA 101, 10116–10121 (2004).

    CAS  PubMed  Google Scholar 

  88. Krieg, A.M., Efler, S.M., Wittpoth, M., Al Adhami, M.J. & Davis, H.L. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J. Immunother. 27, 460–471 (2004).

    CAS  PubMed  Google Scholar 

  89. Link, B.K. et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J. Immunother. 29, 558–568 (2006).

    CAS  PubMed  Google Scholar 

  90. Kanzler, H., Barrat, F.J., Hessel, E.M. & Coffman, R.L. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat. Med. 13, 552–559 (2007).

    CAS  PubMed  Google Scholar 

  91. Whiteside, T.L. & Friberg, D. Natural killer cells and natural killer cell activity in chronic fatigue syndrome. Am. J. Med. 105, 27S–34S (1998).

    CAS  PubMed  Google Scholar 

  92. Brandau, S. et al. NK cells are essential for effective BCG immunotherapy. Int. J. Cancer 92, 697–702 (2001).

    CAS  PubMed  Google Scholar 

  93. Davies, F.E. et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98, 210–216 (2001).

    CAS  PubMed  Google Scholar 

  94. Brune, M. et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood 108, 88–96 (2006).

    CAS  PubMed  Google Scholar 

  95. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    CAS  PubMed  Google Scholar 

  96. Ishikawa, A. et al. A phase I study of α-galactosylceramide (KRN7000)–pulsed dendritic cells in patients with advanced and recurrent non–small cell lung cancer. Clin. Cancer Res. 11, 1910–1917 (2005).

    CAS  PubMed  Google Scholar 

  97. Motohashi, S. et al. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 12, 6079–6086 (2006).

    CAS  PubMed  Google Scholar 

  98. Mazodier, K. et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood 106, 3483–3489 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim, M.H. et al. Secreted and membrane-associated matrix metalloproteinases of IL-2-activated NK cells and their inhibitors. J. Immunol. 164, 5883–5889 (2000).

    CAS  PubMed  Google Scholar 

  100. Atkins, M.B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    CAS  PubMed  Google Scholar 

  101. Bukowski, R.M. Natural history and therapy of metastatic renal cell carcinoma: the role of interleukin-2. Cancer 80, 1198–1220 (1997).

    CAS  PubMed  Google Scholar 

  102. Meropol, N.J. et al. Evaluation of natural killer cell expansion and activation in vivo with daily subcutaneous low-dose interleukin-2 plus periodic intermediate-dose pulsing. Cancer Immunol. Immunother. 46, 318–326 (1998).

    CAS  PubMed  Google Scholar 

  103. Meseri, A. et al. Natural-killer cell activity and cytogenetic response in chronic myelogenous leukemia treated with alpha-interferon. Br. J. Haematol. 78, 585–586 (1991).

    CAS  PubMed  Google Scholar 

  104. de Castro, F.A. et al. Immunological effects of interferon-alpha on chronic myelogenous leukemia. Leuk. Lymphoma 44, 2061–2067 (2003).

    CAS  PubMed  Google Scholar 

  105. Gollob, J.A. et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-γ induction is associated with clinical response. Clin. Cancer Res. 6, 1678–1692 (2000).

    CAS  PubMed  Google Scholar 

  106. Robertson, M.J. et al. Immunological effects of interleukin 12 administered by bolus intravenous injection to patients with cancer. Clin. Cancer Res. 5, 9–16 (1999).

    CAS  PubMed  Google Scholar 

  107. Gollob, J.A. et al. Phase I trial of concurrent twice-weekly recombinant human interleukin-12 plus low-dose IL-2 in patients with melanoma or renal cell carcinoma. J. Clin. Oncol. 21, 2564–2573 (2003).

    PubMed  Google Scholar 

  108. Robertson, M.J. et al. Clinical and biological effects of recombinant human interleukin-18 administered by intravenous infusion to patients with advanced cancer. Clin. Cancer Res. 12, 4265–4273 (2006).

    CAS  PubMed  Google Scholar 

  109. Davis, I.D. et al. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin. Cancer Res. 13, 3630–3636 (2007).

    CAS  PubMed  Google Scholar 

  110. Chen, W. et al. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function. Biol. Blood Marrow Transplant. 11, 23–34 (2005).

    CAS  PubMed  Google Scholar 

  111. Pilla, L. et al. Natural killer and NK-like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96. Cancer Res. 65, 3942–3949 (2005).

    CAS  PubMed  Google Scholar 

  112. Mazzaferro, V. et al. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin. Cancer Res. 9, 3235–3245 (2003).

    CAS  PubMed  Google Scholar 

  113. McHutchison, J.G. et al. Phase 1B, randomized, double-blind, dose-escalation trial of CPG 10101 in patients with chronic hepatitis C virus. Hepatology 46, 1341–1349 (2007).

    CAS  PubMed  Google Scholar 

  114. Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J. Transl. Med. 3, 10 (2005).

    PubMed  PubMed Central  Google Scholar 

  115. Gluck, W.L. et al. Phase I studies of interleukin (IL)-2 and rituximab in B-cell non-Hodgkin's lymphoma: IL-2 mediated natural killer cell expansion correlations with clinical response. Clin. Cancer Res. 10, 2253–2264 (2004).

    CAS  PubMed  Google Scholar 

  116. Berdeja, J.G. et al. Systemic interleukin-2 and adoptive transfer of lymphokine-activated killer cells improves antibody-dependent cellular cytotoxicity in patients with relapsed B-cell lymphoma treated with rituximab. Clin. Cancer Res. 13, 2392–2399 (2007).

    CAS  PubMed  Google Scholar 

  117. Parihar, R. et al. A phase I study of interleukin 12 with trastuzumab in patients with human epidermal growth factor receptor-2-overexpressing malignancies: analysis of sustained interferon γ production in a subset of patients. Clin. Cancer Res. 10, 5027–5037 (2004).

    CAS  PubMed  Google Scholar 

  118. Renner, C. et al. Initiation of humoral and cellular immune responses in patients with refractory Hodgkin's disease by treatment with an anti-CD16/CD30 bispecific antibody. Cancer Immunol. Immunother. 49, 173–180 (2000).

    CAS  PubMed  Google Scholar 

  119. Hartmann, F. et al. Anti-CD16/CD30 bispecific antibody treatment for Hodgkin's disease: role of infusion schedule and costimulation with cytokines. Clin. Cancer Res. 7, 1873–1881 (2001).

    CAS  PubMed  Google Scholar 

  120. Li, Z., Lim, W.K., Mahesh, S.P., Liu, B. & Nussenblatt, R.B. Cutting edge: in vivo blockade of human IL-2 receptor induces expansion of CD56bright regulatory NK cells in patients with active uveitis. J. Immunol. 174, 5187–5191 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Zitvogel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terme, M., Ullrich, E., Delahaye, N. et al. Natural killer cell–directed therapies: moving from unexpected results to successful strategies. Nat Immunol 9, 486–494 (2008). https://doi.org/10.1038/ni1580

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing