Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mincle is an ITAM-coupled activating receptor that senses damaged cells

Abstract

Macrophage-inducible C-type lectin (Mincle) is expressed mainly in macrophages and is induced after exposure to various stimuli and stresses. Here we show that Mincle selectively associated with the Fc receptor common γ-chain and activated macrophages to produce inflammatory cytokines and chemokines. Mincle-expressing cells were activated in the presence of dead cells, and we identified SAP130, a component of small nuclear ribonucloprotein, as a Mincle ligand that is released from dead cells. To investigate whether Mincle is required for normal responses to cell death in vivo, we induced thymocyte death by irradiating mice and found that transient infiltration of neutrophils into the thymus could be blocked by injection of Mincle-specific antibody. Our results suggest that Mincle is a receptor that senses nonhomeostatic cell death and thereby induces the production of inflammatory cytokines to drive the infiltration of neutrophils into damaged tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mincle is associated with FcRγ through charged residues.
Figure 2: Mincle transduces activation signals into macrophages in an FcRγ-dependent way.
Figure 3: FcRγ transduces Mincle signaling through ITAM.
Figure 4: Dead cells mediate activation signals through Mincle.
Figure 5: SAP130 selectively binds to Mincle.
Figure 6: SAP130 acts as a functional ligand of Mincle.
Figure 7: Mincle induction and neutrophil infiltration after whole-body irradiation.
Figure 8: Anti-Mincle blocks neutrophil infiltration after thymocyte death.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Fadok, V.A., Bratton, D.L. & Henson, P.M. Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J. Clin. Invest. 108, 957–962 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  2. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  Google Scholar 

  3. Lorimore, S.A., Coates, P.J., Scobie, G.E., Milne, G. & Wright, E.G. Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene 20, 7085–7095 (2001).

    Article  CAS  Google Scholar 

  4. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  5. Zelensky, A.N. & Gready, J.E. The C-type lectin-like domain superfamily. FEBS J. 272, 6179–6217 (2005).

    Article  CAS  Google Scholar 

  6. Robinson, M.J., Sancho, D., Slack, E.C., LeibundGut-Landmann, S. & Reis e Sousa, C. Myeloid C-type lectins in innate immunity. Nat. Immunol. 7, 1258–1265 (2006).

    Article  CAS  Google Scholar 

  7. Ogden, C.A. et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194, 781–795 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  8. Nauta, A.J. et al. Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur. J. Immunol. 33, 2853–2863 (2003).

    Article  CAS  Google Scholar 

  9. Delneste, Y. et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17, 353–362 (2002).

    Article  CAS  Google Scholar 

  10. Yuita, H. et al. Retardation of removal of radiation-induced apoptotic cells in developing neural tubes in macrophage galactose-type C-type lectin-1-deficient mouse embryos. Glycobiology 15, 1368–1375 (2005).

    Article  CAS  Google Scholar 

  11. Rogers, N.C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005).

    Article  CAS  Google Scholar 

  12. Fuller, G.L. et al. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J. Biol. Chem. 282, 12397–12409 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  13. Kanazawa, N., Tashiro, K., Inaba, K. & Miyachi, Y. Dendritic cell immunoactivating receptor, a novel C-type lectin immunoreceptor, acts as an activating receptor through association with Fc receptor gamma chain. J. Biol. Chem. 278, 32645–32652 (2003).

    Article  CAS  Google Scholar 

  14. Bakker, A.B., Baker, E., Sutherland, G.R., Phillips, J.H. & Lanier, L.L. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc. Natl. Acad. Sci. USA 96, 9792–9796 (1999).

    Article  CAS  Google Scholar 

  15. Sato, K. et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J. Biol. Chem. 281, 38854–38866 (2006).

    Article  CAS  Google Scholar 

  16. Flornes, L.M. et al. Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics 56, 506–517 (2004).

    Article  CAS  Google Scholar 

  17. Matsumoto, M. et al. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J. Immunol. 163, 5039–5048 (1999).

    CAS  PubMed  Google Scholar 

  18. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  Google Scholar 

  19. Hsu, Y.M. et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat. Immunol. 8, 198–205 (2007).

    Article  CAS  Google Scholar 

  20. Hara, H. et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat. Immunol. 8, 619–629 (2007).

    Article  CAS  Google Scholar 

  21. Bjorkbacka, H. et al. The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades. Physiol. Genomics 19, 319–330 (2004).

    Article  Google Scholar 

  22. Ohtsuka, M. et al. NFAM1, an immunoreceptor tyrosine-based activation motif-bearing molecule that regulates B cell development and signaling. Proc. Natl. Acad. Sci. USA 101, 8126–8131 (2004).

    Article  CAS  Google Scholar 

  23. Drickamer, K. Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 360, 183–186 (1992).

    Article  CAS  Google Scholar 

  24. Das, B.K. et al. Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol. Cell. Biol. 19, 6796–6802 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  25. Brand, M. et al. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J. 20, 3187–3196 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  26. Lotze, M.T. & Tracey, K.J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331–342 (2005).

    Article  CAS  Google Scholar 

  27. Caricchio, R., McPhie, L. & Cohen, P.L. Ultraviolet B radiation-induced cell death: critical role of ultraviolet dose in inflammation and lupus autoantigen redistribution. J. Immunol. 171, 5778–5786 (2003).

    Article  CAS  Google Scholar 

  28. Li, J. et al. Impaired phagocytosis in caveolin-1 deficient macrophages. Cell Cycle 4, 1599–1607 (2005).

    Article  CAS  Google Scholar 

  29. Uchimura, E., Watanabe, N., Niwa, O., Muto, M. & Kobayashi, Y. Transient infiltration of neutrophils into the thymus in association with apoptosis induced by whole-body X-irradiation. J. Leukoc. Biol. 67, 780–784 (2000).

    Article  CAS  Google Scholar 

  30. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  31. Iyoda, T., Nagata, K., Akashi, M. & Kobayashi, Y. Neutrophils accelerate macrophage-mediated digestion of apoptotic cells in vivo as well as in vitro. J. Immunol. 175, 3475–3483 (2005).

    Article  CAS  Google Scholar 

  32. Oka, K. et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc. Natl. Acad. Sci. USA 95, 9535–9540 (1998).

    Article  CAS  Google Scholar 

  33. Green, R.S. et al. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27, 308–320 (2007).

    Article  CAS  Google Scholar 

  34. Franz, S. et al. Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis. Cytometry A 69, 230–239 (2006).

    Article  Google Scholar 

  35. Lee, S.J. et al. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295, 1898–1901 (2002).

    Article  CAS  Google Scholar 

  36. Akira, S. & Kishimoto, T. NF-IL6 and NF-κB in cytokine gene regulation. Adv. Immunol. 65, 1–46 (1997).

    Article  CAS  Google Scholar 

  37. Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173–182 (2006).

    Article  CAS  Google Scholar 

  38. Nakamura, N. et al. Isolation and expression profiling of genes upregulated in bone marrow-derived mononuclear cells of rheumatoid arthritis patients. DNA Res. 13, 169–183 (2006).

    Article  CAS  Google Scholar 

  39. Ribbhammar, U. et al. High resolution mapping of an arthritis susceptibility locus on rat chromosome 4, and characterization of regulated phenotypes. Hum. Mol. Genet. 12, 2087–2096 (2003).

    Article  CAS  Google Scholar 

  40. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  41. Kim, H.S. et al. Toll-like receptor 2 senses β-cell death and contributes to the initiation of autoimmune diabetes. Immunity 27, 321–333 (2007).

    Article  CAS  Google Scholar 

  42. Mimori, T., Hinterberger, M., Pettersson, I. & Steitz, J.A. Autoantibodies to the U2 small nuclear ribonucleoprotein in a patient with scleroderma-polymyositis overlap syndrome. J. Biol. Chem. 259, 560–565 (1984).

    CAS  PubMed  Google Scholar 

  43. Savarese, E. et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 107, 3229–3234 (2006).

    Article  CAS  Google Scholar 

  44. Vollmer, J. et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  45. Hamerman, J.A., Tchao, N.K., Lowell, C.A. & Lanier, L.L. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat. Immunol. 6, 579–586 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  46. Cao, W. et al. Plasmacytoid dendritic cell-specific receptor ILT7-FcεRIγ inhibits Toll-like receptor-induced interferon production. J. Exp. Med. 203, 1399–1405 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  47. Wells, C.A. et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J. Immunol. 180, 7404–7413 (2008).

    Article  CAS  Google Scholar 

  48. Park, S.Y. et al. Resistance of Fc receptor-deficient mice to fatal glomerulonephritis. J. Clin. Invest. 102, 1229–1238 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  49. Hazenbos, W.L. et al. Impaired IgG-dependent anaphylaxis and Arthus reaction in FcγRIII (CD16) deficient mice. Immunity 5, 181–188 (1996).

    Article  CAS  Google Scholar 

  50. Ioan-Facsinay, A. et al. FcgammaRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 16, 391–402 (2002).

    Article  CAS  Google Scholar 

  51. Yamasaki, S. et al. Mechanistic basis of pre–T cell receptor–mediated autonomous signaling critical for thymocyte development. Nat. Immunol. 7, 67–75 (2006).

    Article  CAS  Google Scholar 

  52. Shi, Y., Evans, J.E. & Rock, K.L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Akira (Osaka University) for MyD88-deficient mice on a B6 background; J.S. Verbeek (Leiden University) for FcγRI-deficient and FcγRIII-deficient mice; S. Nagata (Kyoto University) for 'leucine-zippered' FasL; S. Seki, T. Aoyama, A. Iwamatsu, Y. Tatsumi and T. Ishikawa for technical assistance; T. Kaisho, M. Tanaka, Y. Miyake, H. Ohno, H. Yoshida, S. Ishido, T. Sugiyama, T. Imanishi, O. Takeuchi and T. Iwahara for discussions; and H. Yamaguchi for secretarial assistance.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. designed experiments; E.I., M.S. and S.Y. did experiments; S.Y. wrote the paper; H.H. provided knockout mice; K.O. did molecular modeling; and T.S. supervised the research.

Corresponding authors

Correspondence to Sho Yamasaki or Takashi Saito.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 453 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, S., Ishikawa, E., Sakuma, M. et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9, 1179–1188 (2008). https://doi.org/10.1038/ni.1651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing