Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensing of 'danger signals' and pathogen-associated molecular patterns defines binary signaling pathways 'upstream' of Toll

Abstract

In drosophila, molecular determinants from fungi and Gram-positive bacteria are detected by circulating pattern-recognition receptors. Published findings suggest that such pattern-recognition receptors activate as-yet-unidentified serine-protease cascades that culminate in the cleavage of Spätzle, the endogenous Toll receptor ligand, and trigger the immune response. We demonstrate here that the protease Grass defines a common activation cascade for the detection of fungi and Gram-positive bacteria mediated by pattern-recognition receptors. The serine protease Persephone, shown before to be specific for fungal detection in a cascade activated by secreted fungal proteases, was also required for the sensing of proteases elicited by bacteria in the hemolymph. Hence, Persephone defines a parallel proteolytic cascade activated by 'danger signals' such as abnormal proteolytic activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Grass is involved in the sensing of both fungal infection and infection with Gram-positive bacteria.
Figure 2: Isolation of the SPE mutation Pasteur.
Figure 3: Grass acts 'downstream' of PRRs.
Figure 4: Grass and Psh define two parallel pathways that cooperatively activate Toll.
Figure 5: Psh is activated by bacterial proteolytic activities in the hemolymph.

Similar content being viewed by others

References

  1. Hoebe, K. et al. Genetic analysis of innate immunity. Adv. Immunol. 91, 175–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Jones, J.D. & Dangl, J.L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. DeYoung, B.J. & Innes, R.W. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7, 1243–1249 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fritz, J.H., Ferrero, R.L., Philpott, D.J. & Girardin, S.E. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7, 1250–1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Royet, J. Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol. Immunol. 41, 1063–1075 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, L. & Ligoxygakis, P. Pathogen recognition and signalling in the Drosophila innate immune response. Immunobiology 211, 251–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Choe, K.M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K.V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Takehana, A. et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl. Acad. Sci. USA 99, 13705–13710 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takehana, A. et al. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 23, 4690–4700 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber, A.N. et al. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nat. Immunol. 4, 794–800 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Bischoff, V. et al. Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat. Immunol. 5, 1175–1180 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Gobert, V. et al. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302, 2126–2130 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Michel, T., Reichhart, J.M., Hoffmann, J.A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Gottar, M. et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425–1437 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piao, S. et al. Crystal structure of a clip-domain serine protease and functional roles of the clip domains. EMBO J. 24, 4404–4414 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ross, J., Jiang, H., Kanost, M.R. & Wang, Y. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304, 117–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Moussian, B. & Roth, S. Dorsoventral axis formation in the Drosophila embryo–shaping and transducing a morphogen gradient. Curr. Biol. 15, R887–R899 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Levashina, E.A. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Ligoxygakis, P., Pelte, N., Hoffmann, J.A. & Reichhart, J.M. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297, 114–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Jang, I.H. et al. A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 10, 45–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Mulinari, S., Hacker, U. & Castillejo-Lopez, C. Expression and regulation of Spatzle-processing enzyme in Drosophila. FEBS Lett. 580, 5406–5410 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kambris, Z. et al. Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16, 808–813 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Pelte, N. et al. Immune challenge induces N-terminal cleavage of the Drosophila serpin Necrotic. Insect Biochem. Mol. Biol. 36, 37–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Rawlings, N.D., Morton, F.R. & Barrett, A.J. MEROPS: the peptidase database. Nucleic Acids Res. 34, D270–D272 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Green, C. et al. The necrotic gene in Drosophila corresponds to one of a cluster of three serpin transcripts mapping at 43A1.2. Genetics 156, 1117–1127 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, C.H. et al. A three-step proteolytic cascade mediates the activation of the peptidoglycan-induced Toll pathway in an Insect. J. Biol. Chem. 283, 7599–7607 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Jiggins, F.M. & Kim, K.W. A screen for immunity genes evolving under positive selection in Drosophila. J. Evol. Biol. 20, 965–970 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Sansonetti, P.J. The innate signaling of dangers and the dangers of innate signaling. Nat. Immunol. 7, 1237–1242 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Shpacovitch, V., Feld, M., Bunnett, N.W. & Steinhoff, M. Protease-activated receptors: novel PARtners in innate immunity. Trends Immunol. 28, 535–544 (2007).

    Article  Google Scholar 

  35. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  36. Leclerc, V. et al. Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep. 7, 231–235 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this work to the memory of A. Killinc, who found the original Pasteur mutation. We thank L. Gutmann (Institut National de la Santé et de la Recherche Médicale U872) for E. faecalis peptidoglycan and A. Meunier, S. Ozkan and R. Walther for technical help. Supported by the French Research Ministry (L.E.C.), Association pour la Recherche contre le Cancer (L.E.C.), Centre National de la Recherche Scientifique and the National Institutes of Health (5PO1-AI044220-09).

Author information

Authors and Affiliations

Authors

Contributions

L.E.C. and V.L. designed and did most of the experiments; I.C. contributed to the experiments and to manuscript criticism; and J.-M.R. directed the experiments and wrote the paper with L.E.C. and V.L.

Corresponding author

Correspondence to Jean-Marc Reichhart.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 1799 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamy, L., Leclerc, V., Caldelari, I. et al. Sensing of 'danger signals' and pathogen-associated molecular patterns defines binary signaling pathways 'upstream' of Toll. Nat Immunol 9, 1165–1170 (2008). https://doi.org/10.1038/ni.1643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing