Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells

Abstract

The transcription factors GATA-3 and ThPOK are required for intrathymic differentiation of CD4+ T cells, but their precise functions in this process remain unclear. Here we show that, contrary to previous findings, Gata3 disruption blocked differentiation into the CD4+ T cell lineage before commitment to the CD4+ lineage and in some contexts permitted the 'redirection' of major histocompatibility complex class II–restricted thymocytes into the CD8+ lineage. GATA-3 promoted ThPOK expression and bound to a region of the locus encoding ThPOK established as being critical for ThPOK expression. Finally, ThPOK promoted differentiation into the CD4+ lineage in a way dependent on GATA-3 but inhibited differentiation into the CD8+ lineage independently of GATA-3. We propose that GATA-3 acts as a specification factor for the CD4+ lineage 'upstream' of the ThPOK-controlled CD4+ commitment checkpoint.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ThPOK disruption does not affect CD4+ differentiation before the CD4+-CD8+ lineage-commitment checkpoint.
Figure 2: Gata3 disruption prevents CD4+ differentiation but not positive selection.
Figure 3: GATA-3-deficient MHC class II–restricted thymocytes undergo intrathymic signaling and are inefficiently redirected into the CD8+ lineage.
Figure 4: GATA-3 is required 'upstream' of ThPOK.
Figure 5: ThPOK needs GATA-3 to promote CD4+ but not to inhibit CD8+ differentiation.
Figure 6: GATA-3 is recruited to a region of the ThPOK locus critical for ThPOK expression.

Similar content being viewed by others

References

  1. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  Google Scholar 

  2. Bosselut, R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nat. Rev. Immunol. 4, 529–540 (2004).

    Article  CAS  Google Scholar 

  3. Laky, K. & Fowlkes, B. Receptor signals and nuclear events in CD4 and CD8 T cell lineage commitment. Curr. Opin. Immunol. 17, 116–121 (2005).

    Article  CAS  Google Scholar 

  4. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  Google Scholar 

  5. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    Article  CAS  Google Scholar 

  6. Bilic, I. & Ellmeier, W. The role of BTB domain-containing zinc finger proteins in T cell development and function. Immunol. Lett. 108, 1–9 (2007).

    Article  CAS  Google Scholar 

  7. Ting, C.N., Olson, M.C., Barton, K.P. & Leiden, J.M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996).

    Article  CAS  Google Scholar 

  8. Zhu, J., Yamane, H., Cote-Sierra, J., Guo, L. & Paul, W.E. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 16, 3–10 (2006).

    Article  CAS  Google Scholar 

  9. Ho, I.C. & Pai, S.Y. GATA-3—not just for Th2 cells anymore. Cell. Mol. Immunol. 4, 15–29 (2007).

    CAS  PubMed  Google Scholar 

  10. Hendriks, R.W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 (1999).

    Article  CAS  Google Scholar 

  11. Hernandez-Hoyos, G., Anderson, M.K., Wang, C., Rothenberg, E.V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003).

    Article  CAS  Google Scholar 

  12. Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  Google Scholar 

  13. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nat. Immunol. 5, 1157–1165 (2004).

    Article  CAS  Google Scholar 

  14. Ling, K.W. et al. GATA3 controls the expression of CD5 and the T cell receptor during CD4 T cell lineage development. Eur. J. Immunol. 37, 1043–1052 (2007).

    Article  CAS  Google Scholar 

  15. Wolfe, S.A., Nekludova, L. & Pabo, C.O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).

    Article  CAS  Google Scholar 

  16. Galera, P., Musso, M., Ducy, P. & Karsenty, G. c-Krox, a transcriptional regulator of type I collagen gene expression, is preferentially expressed in skin. Proc. Natl. Acad. Sci. USA 91, 9372–9376 (1994).

    Article  CAS  Google Scholar 

  17. Seder, R.A., Paul, W.E., Davis, M.M. & Fazekas de St Groth, B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176, 1091–1098 (1992).

    Article  CAS  Google Scholar 

  18. Rothenberg, E.V. Stepwise specification of lymphocyte developmental lineages. Curr. Opin. Genet. Dev. 10, 370–379 (2000).

    Article  CAS  Google Scholar 

  19. Ko, L.J. & Engel, J.D. DNA-binding specificities of the GATA transcription factor family. Mol. Cell. Biol. 13, 4011–4022 (1993).

    Article  CAS  Google Scholar 

  20. Merika, M. & Orkin, S.H. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol. Cell. Biol. 15, 2437–2447 (1995).

    Article  CAS  Google Scholar 

  21. He, X. et al. CD4–CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity 28, 346–358 (2008).

    Article  CAS  Google Scholar 

  22. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    Article  CAS  Google Scholar 

  23. Ellmeier, W., Sunshine, M.J., Losos, K., Hatam, F. & Littman, D.R. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 7, 537–547 (1997).

    Article  CAS  Google Scholar 

  24. Hostert, A. et al. A region in the CD8 gene locus that directs expression to the mature CD8 T cell subset in transgenic mice. Immunity 7, 525–536 (1997).

    Article  CAS  Google Scholar 

  25. Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008).

    Article  CAS  Google Scholar 

  26. Bender, T.P., Kremer, C.S., Kraus, M., Buch, T. & Rajewsky, K. Critical functions for c-Myb at three checkpoints during thymocyte development. Nat. Immunol. 5, 721–729 (2004).

    Article  CAS  Google Scholar 

  27. Maurice, D., Hooper, J., Lang, G. & Weston, K. c-Myb regulates lineage choice in developing thymocytes via its target gene Gata3. EMBO J. 26, 3629–3640 (2007).

    Article  CAS  Google Scholar 

  28. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    Article  CAS  Google Scholar 

  29. Hagman, J. & Lukin, K. Transcription factors drive B cell development. Curr. Opin. Immunol. 18, 127–134 (2006).

    Article  CAS  Google Scholar 

  30. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  Google Scholar 

  31. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R.N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    Article  CAS  Google Scholar 

  32. Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4–CD8 lineage differentiation in vivo. Nat. Immunol. 5, 280–288 (2004).

    Article  CAS  Google Scholar 

  33. Itano, A. et al. The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. J. Exp. Med. 183, 731–741 (1996).

    Article  CAS  Google Scholar 

  34. Hernandez-Hoyos, G., Sohn, S.J., Rothenberg, E.V. & Alberola-Ila, J. Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 12, 313–322 (2000).

    Article  CAS  Google Scholar 

  35. Azzam, H.S. et al. Fine tuning of TCR signaling by CD5. J. Immunol. 166, 5464–5472 (2001).

    Article  CAS  Google Scholar 

  36. Nawijn, M.C. et al. Enforced expression of GATA-3 during T cell development inhibits maturation of CD8 single-positive cells and induces thymic lymphoma in transgenic mice. J. Immunol. 167, 715–723 (2001).

    Article  CAS  Google Scholar 

  37. Atherly, L.O. et al. The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells. Immunity 25, 79–91 (2006).

    Article  CAS  Google Scholar 

  38. Dubois, S., Waldmann, T.A. & Muller, J.R. ITK and IL-15 support two distinct subsets of CD8+ T cells. Proc. Natl. Acad. Sci. USA 103, 12075–12080 (2006).

    Article  CAS  Google Scholar 

  39. Horai, R. et al. Requirements for selection of conventional and innate T lymphocyte lineages. Immunity 27, 775–785 (2007).

    Article  CAS  Google Scholar 

  40. Yu, Q., Erman, B., Bhandoola, A., Sharrow, S.O. & Singer, A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+ T cells. J. Exp. Med. 197, 475–487 (2003).

    Article  CAS  Google Scholar 

  41. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    Article  CAS  Google Scholar 

  42. Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA 100, 7731–7736 (2003).

    Article  CAS  Google Scholar 

  43. Jenkinson, S.R. et al. Expression of the transcription factor cKrox in peripheral CD8 T cells reveals substantial postthymic plasticity in CD4–CD8 lineage differentiation. J. Exp. Med. 204, 267–272 (2007).

    Article  CAS  Google Scholar 

  44. Wildt, K.F. et al. The transcription factor Zbtb7b promotes CD4 expression by antagonizing Runx-mediated activation of the CD4 silencer. J. Immunol. 179, 4405–4414 (2007).

    Article  CAS  Google Scholar 

  45. Egawa, T., Tillman, R.E., Naoe, Y., Taniuchi, I. & Littman, D.R. The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J. Exp. Med. 204, 1945–1957 (2007).

    Article  CAS  Google Scholar 

  46. Ma, W. et al. Hepatic vascular tumors, angiectasis in multiple organs, and impaired spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res. 63, 5320–5328 (2003).

    CAS  PubMed  Google Scholar 

  47. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  Google Scholar 

  48. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).

    Article  CAS  Google Scholar 

  49. Liu, X. et al. Restricting Zap70 expression to CD4+CD8+ thymocytes reveals a T cell receptor-dependent proofreading mechanism controlling the completion of positive selection. J. Exp. Med. 197, 363–373 (2003).

    Article  CAS  Google Scholar 

  50. Swat, W. & Dessing, M. von, B. H. & Kisielow, P. CD69 expression during selection and maturation of CD4+8+ thymocytes. Eur. J. Immunol. 23, 739–746 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Xiong, R. Jenkinson and J. Rozenberg for assistance with ChIP assays; E. Southon for embryonic stem cell recombination; M. Pellegrini and A. Nussenzweig for assistance with recombination-mediated genetic engineering; E. Castro and G. Sanchez for mouse technical assistance; B. Taylor and S. Banerjee for cell sorting; and A. Gégonne and A. Singer for reading the manuscript. Supported by the Intramural Research Programs of the National Cancer Institute, Center for Cancer Research, and of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Bosselut.

Supplementary information

Supplementary Text and Figure

Supplementary Figures 1–11, Tables 1–3 and Methods (PDF 4474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wildt, K., Zhu, J. et al. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nat Immunol 9, 1122–1130 (2008). https://doi.org/10.1038/ni.1647

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing