Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical regulation of CD4+ T cell survival and autoimmunity by β-arrestin 1

Abstract

CD4+ T cells are important in adaptive immunity, but their dysregulation can cause autoimmunity. Here we demonstrate that the multifunctional adaptor protein β-arrestin 1 positively regulated naive and activated CD4+ T cell survival. We found enhanced expression of the proto-oncogene Bcl2 through β-arrestin 1–dependent regulation of acetylation of histone H4 at the Bcl2 promoter. Mice deficient in the gene encoding β-arrestin 1 (Arrb1) were much more resistant to experimental autoimmune encephalomyelitis, whereas overexpression of Arrb1 increased susceptibility to this disease. CD4+ T cells from patients with multiple sclerosis had much higher Arrb1 expression, and 'knockdown' of Arrb1 by RNA-mediated interference in those cells increased apoptosis induced by cytokine withdrawal. Our data demonstrate that β-arrestin 1 is critical for CD4+ T cell survival and is a factor in susceptibility to autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Involvement of β-arrestin 1 in the homeostasis and survival of CD4+ T cells.
Figure 2: Promotion of Bcl2 expression by β-arrestin 1 in CD4+ T cells.
Figure 3: Promotion of acetylation of histone H4 at the Bcl2 locus by β-arrestin 1.
Figure 4: Critical involvement of β-arrestin 1 in EAE.
Figure 5: Critical involvement of β-arrestin 1 in the pathogenesis of multiple sclerosis.

Similar content being viewed by others

References

  1. Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol. 22, 765–787 (2004).

    Article  CAS  Google Scholar 

  2. Stockinger, B., Kassiotis, G. & Bourgeois, C. Homeostasis and T cell regulation. Curr. Opin. Immunol. 16, 775–779 (2004).

    Article  CAS  Google Scholar 

  3. Strasser, A. & Pellegrini, M. T-lymphocyte death during shutdown of an immune response. Trends Immunol. 25, 610–615 (2004).

    Article  CAS  Google Scholar 

  4. Bidere, N., Su, H.C. & Lenardo, M.J. Genetic disorders of programmed cell death in the immune system. Annu. Rev. Immunol. 24, 321–352 (2006).

    Article  CAS  Google Scholar 

  5. Hughes, P., Bouillet, P. & Strasser, A. Role of Bim and other Bcl-2 family members in autoimmune and degenerative diseases. Curr. Dir. Autoimmun. 9, 74–94 (2006).

    CAS  PubMed  Google Scholar 

  6. Marsden, V.S. & Strasser, A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu. Rev. Immunol. 21, 71–105 (2003).

    Article  CAS  Google Scholar 

  7. Hengartner, M.O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  Google Scholar 

  8. Strasser, A., O'Connor, L. & Dixit, V.M. Apoptosis signaling. Annu. Rev. Biochem. 69, 217–245 (2000).

    Article  CAS  Google Scholar 

  9. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  Google Scholar 

  10. Strasser, A., Harris, A.W. & Cory, S. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899 (1991).

    Article  CAS  Google Scholar 

  11. Hildeman, D.A. et al. Activated T cell death in vivo mediated by proapoptotic Bcl-2 family member Bim. Immunity 16, 759–767 (2002).

    Article  CAS  Google Scholar 

  12. Grayson, J.M., Zajac, A.J., Altman, J.D. & Ahmed, R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J. Immunol. 164, 3950–3954 (2000).

    Article  CAS  Google Scholar 

  13. Veis, D.J., Sorenson, C.M., Shutter, J.R. & Korsmeyer, S.J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    Article  CAS  Google Scholar 

  14. Strasser, A. et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl. Acad. Sci. USA 88, 8661–8665 (1991).

    Article  CAS  Google Scholar 

  15. Dewire, S.M., Ahn, S., Lefkowitz, R.J. & Shenoy, S.K. β-Arrestins and cell signaling. Annu. Rev. Physiol. 69, 483–510 (2007).

    Article  CAS  Google Scholar 

  16. Wilbanks, A.M. et al. Beta-arrestin 2 regulates zebrafish development through the hedgehog signaling pathway. Science 306, 2264–2267 (2004).

    Article  CAS  Google Scholar 

  17. Chen, W. et al. Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling. Science 301, 1394–1397 (2003).

    Article  CAS  Google Scholar 

  18. Chen, W. et al. Activity-dependent internalization of smoothened mediated by β-arrestin 2 and GRK2. Science 306, 2257–2260 (2004).

    Article  CAS  Google Scholar 

  19. Perry, S.J. & Lefkowitz, R.J. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol. 12, 130–138 (2002).

    Article  CAS  Google Scholar 

  20. Luttrell, L.M. et al. Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc. Natl. Acad. Sci. USA 98, 2449–2454 (2001).

    Article  CAS  Google Scholar 

  21. DeFea, K.A. et al. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proc. Natl. Acad. Sci. USA 97, 11086–11091 (2000).

    Article  CAS  Google Scholar 

  22. Kang, J. et al. A nuclear function of β-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 123, 833–847 (2005).

    Article  CAS  Google Scholar 

  23. Ferguson, S.S., Barak, L.S., Zhang, J. & Caron, M.G. G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can. J. Physiol. Pharmacol. 74, 1095–1110 (1996).

    Article  CAS  Google Scholar 

  24. Parruti, G. et al. Molecular analysis of human β-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. J. Biol. Chem. 268, 9753–9761 (1993).

    CAS  PubMed  Google Scholar 

  25. Walker, J.K. et al. Beta-arrestin-2 regulates the development of allergic asthma. J. Clin. Invest. 112, 566–574 (2003).

    Article  CAS  Google Scholar 

  26. Wang, Y. et al. Association of β-arrestin and TRAF6 negatively regulates Toll-like receptor–interleukin 1 receptor signaling. Nat. Immunol. 7, 139–147 (2006).

    Article  CAS  Google Scholar 

  27. DiSanto, J.P., Guy-Grand, D., Fisher, A. & Tarakhovsky, A. Critical role for the common cytokine receptor γ chain in intrathymic and peripheral T cell selection. J. Exp. Med. 183, 1111–1118 (1996).

    Article  CAS  Google Scholar 

  28. Nakajima, H., Shores, E.W., Noguchi, M. & Leonard, W.J. The common cytokine receptor γ chain plays an essential role in regulating lymphoid homeostasis. J. Exp. Med. 185, 189–195 (1997).

    Article  CAS  Google Scholar 

  29. Ben-Sasson, S.Z., Makedonski, K., Hu-Li, J. & Paul, W.E. Survival and cytokine polarization of naive CD4+ T cells in vitro is largely dependent on exogenous cytokines. Eur. J. Immunol. 30, 1308–1317 (2000).

    Article  CAS  Google Scholar 

  30. Kane, L.P. & Weiss, A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol. Rev. 192, 7–20 (2003).

    Article  CAS  Google Scholar 

  31. Gendron, S., Couture, J. & Aoudjit, F. Integrin α2 β1 inhibits Fas-mediated apoptosis in T lymphocytes by protein phosphatase 2A-dependent activation of the MAPK/ERK pathway. J. Biol. Chem. 278, 48633–48643 (2003).

    Article  CAS  Google Scholar 

  32. Scott, M.G. et al. Differential nucleocytoplasmic shuttling of β-arrestins. Characterization of a leucine-rich nuclear export signal in β-arrestin2. J. Biol. Chem. 277, 37693–37701 (2002).

    Article  CAS  Google Scholar 

  33. Wang, P., Wu, Y., Ge, X., Ma, L. & Pei, G. Subcellular localization of β-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J. Biol. Chem. 278, 11648–11653 (2003).

    Article  CAS  Google Scholar 

  34. Jambal, P. et al. Cytokine-mediated down-regulation of the transcription factor cAMP-response element-binding protein in pancreatic β-cells. J. Biol. Chem. 278, 23055–23065 (2003).

    Article  CAS  Google Scholar 

  35. Tamatani, M. et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531–8538 (1999).

    Article  CAS  Google Scholar 

  36. Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    Article  CAS  Google Scholar 

  37. Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 23, 683–747 (2005).

    Article  CAS  Google Scholar 

  38. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  39. Vroon, A., Lombardi, M.S., Kavelaars, A. & Heijnen, C.J. Changes in the G-protein-coupled receptor desensitization machinery during relapsing-progressive experimental allergic encephalomyelitis. J. Neuroimmunol. 137, 79–86 (2003).

    Article  CAS  Google Scholar 

  40. Zang, Y.C., Hong, J., Rivera, V.M., Killian, J. & Zhang, J.Z. Human anti-idiotypic T cells induced by TCR peptides corresponding to a common CDR3 sequence motif in myelin basic protein-reactive T cells. Int. Immunol. 15, 1073–1080 (2003).

    Article  CAS  Google Scholar 

  41. Oakley, R.H., Laporte, S.A., Holt, J.A., Caron, M.G. & Barak, L.S. Differential affinities of visual arrestin, β arrestin1, and β arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201–17210 (2000).

    Article  CAS  Google Scholar 

  42. Nguyen, K. & Miller, B.C. CD28 costimulation induces delta opioid receptor expression during anti-CD3 activation of T cells. J. Immunol. 168, 4440–4445 (2002).

    Article  CAS  Google Scholar 

  43. Zhang, J. & Hutton, G. Role of magnetic resonance imaging and immunotherapy in treating multiple sclerosis. Annu. Rev. Med. 56, 273–302 (2005).

    Article  CAS  Google Scholar 

  44. van Oosten, B.W. et al. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49, 351–357 (1997).

    Article  CAS  Google Scholar 

  45. Rep, M.H. et al. Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-γ secreting TH1 cells in humans. J. Clin. Invest. 99, 2225–2231 (1997).

    Article  CAS  Google Scholar 

  46. Wang, P. et al. Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J. Biol. Chem. 278, 6363–6370 (2003).

    Article  CAS  Google Scholar 

  47. Sun, Y., Cheng, Z., Ma, L. & Pei, G. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J. Biol. Chem. 277, 49212–49219 (2002).

    Article  CAS  Google Scholar 

  48. Ota, K. et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346, 183–187 (1990).

    Article  CAS  Google Scholar 

  49. Zappia, E. et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755–1761 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.J. Lefkowitz (Duke University Medical Center) for rabbit polyclonal anti-β-arrestin (A1CT) and for Arrb1−/− and Arrb2−/− mice; Y. Shi, J. Cai and X. Liu for discussions; and S. Xin, Y. Li, G. Ding, P. Wu and S. Chen for technical assistance. Supported by the Ministry of Science and Technology (2003CB515405 and 2005CB522406), the National Natural Science Foundation of China (30021003, 30623003, 30625014, 30400230, 30430650 and 30571731), the Shanghai Municipal Commission for Science and Technology (06ZR14098, 04JC14040, 04DZ14902 and PJ200500330), the Shanghai Municipal Health Bureau (LJ06046), the Shanghai Leading Academic Discipline Project (T206) and the Chinese Academy of Sciences (KSCX2-YW-R-56).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. designed and did the experiments and prepared the manuscript; Y.F. and J.K. designed and did the experiments and analyzed the data; C.L. assisted with cell purification, activation and culture; Z.L., Z.G. and C.L. provided the blood samples from patients with multiple sclerosis; D.L. prepared the manuscript; W.C. and J.Q. assisted with the induction of EAE; E.B. and L.Z. assisted with cell purification, activation and culture; and J.Z.Z. and G.P. supervised all studies and the preparation of the manuscript.

Corresponding authors

Correspondence to Jingwu Z Zhang or Gang Pei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 2619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Feng, Y., Kang, J. et al. Critical regulation of CD4+ T cell survival and autoimmunity by β-arrestin 1. Nat Immunol 8, 817–824 (2007). https://doi.org/10.1038/ni1489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing