Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Vagaries of conditional gene targeting

Conditional gene targeting based on excision or inversion of loxP-flanked DNA segments by Cre recombinase is a powerful technology for the analysis of gene function, but unexpected expression patterns of cre transgenes, variability of recombination efficiency depending on the target gene and potential toxicity of Cre recombinase represent serious challenges for the experimenter.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombination of a loxP-flanked Yy1 allele effected by the CD21-Cre3A bacterial artificial chromosome transgene in CD21-Cre3A-transgenic mice heterozygous for the loxP-flanked Yy1 allele.
Figure 2: Induction of Cre-mediated recombination from the Cre-ERT2 transgene29 leads to death of c-Myc-driven primary B cell lymphomas.

References

  1. Glaser, S., Anastassiadis, K. & Stewart, A.F. Current issues in mouse genome engineering. Nat. Genet. 37, 1187–1193 (2005).

    Article  CAS  Google Scholar 

  2. Branda, C.S. & Dymecki, S.M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  Google Scholar 

  3. Rajewsky, K. et al. Conditional gene targeting. J. Clin. Invest. 98, 600–603 (1996).

    Article  CAS  Google Scholar 

  4. Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  Google Scholar 

  5. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  Google Scholar 

  6. Schmidt-Supprian, M., Wunderlich, F.T. & Rajewsky, K. Excision of the Frt-flanked neoR cassette from the CD19cre knock-in transgene reduces Cre-mediated recombination. Transgenic Res. (in the press).

  7. Opferman, J.T. et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671–676 (2003).

    Article  CAS  Google Scholar 

  8. Thomas, M.D., Kremer, C.S., Ravichandran, K.S., Rajewsky, K. & Bender, T.P. c-Myb is critical for B cell development and maintenance of follicular B cells. Immunity 23, 275–286 (2005).

    Article  CAS  Google Scholar 

  9. Kraus, M., Alimzhanov, M.B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004).

    Article  CAS  Google Scholar 

  10. Victoratos, P. et al. FDC-specific functions of p55TNFR and IKK2 in the development of FDC networks and of antibody responses. Immunity 24, 65–77 (2006).

    Article  CAS  Google Scholar 

  11. Zabel, M.D. & Weis, J.H. Cell-specific regulation of the CD21 gene. Int. Immunopharmacol. 1, 483–493 (2001).

    Article  CAS  Google Scholar 

  12. Casola, S. et al. Tracking germinal center B cells expressing germ-line immunoglobulin gamma1 transcripts by conditional gene targeting. Proc. Natl. Acad. Sci. USA 103, 7396–7401 (2006).

    Article  CAS  Google Scholar 

  13. Hafner, M. et al. Keratin 14 Cre transgenic mice authenticate keratin 14 as an oocyte-expressed protein. Genesis 38, 176–181 (2004).

    Article  CAS  Google Scholar 

  14. Hobeika, E. et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc. Natl. Acad. Sci. USA 103, 13789–13794 (2006).

    Article  CAS  Google Scholar 

  15. Ramirez, A. et al. A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis 39, 52–57 (2004).

    Article  CAS  Google Scholar 

  16. Wagner, K.U. et al. Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res. 10, 545–553 (2001).

    Article  CAS  Google Scholar 

  17. Schmidt, E.E., Taylor, D.S., Prigge, J.R., Barnett, S. & Capecchi, M.R. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. USA 97, 13702–13707 (2000).

    Article  CAS  Google Scholar 

  18. Thyagarajan, B., Guimaraes, M.J., Groth, A.C. & Calos, M.P. Mammalian genomes contain active recombinase recognition sites. Gene 244, 47–54 (2000).

    Article  CAS  Google Scholar 

  19. Semprini, S. et al. Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques. Nucleic Acids Res. (2007).

  20. Pfeifer, A., Brandon, E.P., Kootstra, N., Gage, F.H. & Verma, I.M. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc. Natl. Acad. Sci. USA 98, 11450–11455 (2001).

    Article  CAS  Google Scholar 

  21. Silver, D.P. & Livingston, D.M. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol. Cell 8, 233–243 (2001).

    Article  CAS  Google Scholar 

  22. de Alboran, I.M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).

    Article  CAS  Google Scholar 

  23. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 9209–9214 (2001).

    Article  CAS  Google Scholar 

  24. Baba, Y., Nakano, M., Yamada, Y., Saito, I. & Kanegae, Y. Practical range of effective dose for Cre recombinase-expressing recombinant adenovirus without cell toxicity in mammalian cells. Microbiol. Immunol. 49, 559–570 (2005).

    Article  CAS  Google Scholar 

  25. Mahonen, A.J., Airenne, K.J., Lind, M.M., Lesch, H.P. & Yla-Herttuala, S. Optimized self-excising Cre-expression cassette for mammalian cells. Biochem. Biophys. Res. Commun. 320, 366–371 (2004).

    Article  CAS  Google Scholar 

  26. Patsch, C. & Edenhofer, F. Conditional mutagenesis by cell-permeable proteins: potential, limitations and prospects. Handb. Exp. Pharmacol. 178, 203–232 (2007).

    Article  CAS  Google Scholar 

  27. Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA 99, 4489–4494 (2002).

    Article  CAS  Google Scholar 

  28. Heidmann, D. & Lehner, C.F. Reduction of Cre recombinase toxicity in proliferating Drosophila cells by estrogen-dependent activity regulation. Dev. Genes Evol. 211, 458–465 (2001).

    Article  CAS  Google Scholar 

  29. Seibler, J. et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12 (2003).

    Article  Google Scholar 

  30. Lee, J.Y. et al. RIP-Cre revisited, evidence for impairments of pancreatic β-cell function. J. Biol. Chem. 281, 2649–2653 (2006).

    Article  CAS  Google Scholar 

  31. Sato, S., Fujimoto, M., Hasegawa, M., Takehara, K. & Tedder, T.F. Altered B lymphocyte function induces systemic autoimmunity in systemic sclerosis. Mol. Immunol. 41, 1123–1133 (2004).

    Article  CAS  Google Scholar 

  32. Wolfer, A. et al. Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8T cell development. Nat. Immunol. 2, 235–241 (2001).

    Article  CAS  Google Scholar 

  33. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  Google Scholar 

  34. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Liu, Y. Shi, E. Derudder, S. Raffel and S. Casola for allowing us to show unpublished data; S. Casola and other members of the laboratory for discussions of these matters over the years; and S. Casola, C. Wilson and F.T. Wunderlich for comments on this paper. Supported by the National Institutes of Health (K.R.) and the European Union (K.R.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt-Supprian, M., Rajewsky, K. Vagaries of conditional gene targeting. Nat Immunol 8, 665–668 (2007). https://doi.org/10.1038/ni0707-665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0707-665

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing