Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulatory T cell development in the absence of functional Foxp3

This article has been updated

Abstract

Although the development of regulatory T cells (Treg cells) in the thymus is defined by expression of the lineage marker Foxp3, the precise function of Foxp3 in Treg cell lineage commitment is unknown. Here we examined Treg cell development and function in mice with a Foxp3 allele that directs expression of a nonfunctional fusion protein of Foxp3 and enhanced green fluorescent protein (Foxp3ΔEGFP). Thymocyte development in Foxp3ΔEGFP male mice and Foxp3ΔEGFP/+ female mice recapitulated that of wild-type mice. Although mature EGFP+ CD4+ T cells from Foxp3ΔEGFP mice lacked suppressor function, they maintained the characteristic Treg cell 'genetic signature' and failed to develop from EGFP CD4+ T cells when transferred into lymphopenic hosts, indicative of their common ontogeny with Treg cells. Our results indicate that Treg cell effector function but not lineage commitment requires the expression of functional Foxp3 protein.

NOTE: In the version of this article initially published online, the ‘Foxp2EGFP’ and ‘Foxp2ΔEGFP’ labels in Figure 7 are incorrect. The correct labels should be ‘Foxp3EGFP’ and ‘Foxp3ΔEGFP’, respectively. Also, Supplementary Tables 1-3 truncated early. The errors have been corrected for all versions of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Foxp3ΔEGFP mice develop a fatal lymphoproliferative disease similar to that of Foxp3-deficient mice.
Figure 2: Characterization of peripheral T cells in Foxp3ΔEGFP male mice.
Figure 3: Thymocyte development in Foxp3ΔEGFP mice.
Figure 4: Population expansion of EGFP+ CD4+ T cells from Foxp3ΔEGFP male mice.
Figure 5: Peripheral depletion of EGFP+ CD4+ T cells in Foxp3ΔEGFP/+ female mice.
Figure 6: EGFP CD4+ T cells from Foxp3ΔEGFP mice do not convert to EGFP+ CD4+ T cells after adoptive transfer into lymphopenic hosts.
Figure 7: EGFP+ CD4+ T cells from Foxp3ΔEGFP and Foxp3EGFP male mice share a common 'genetic signature'.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 18 February 2007

    NOTE: In the version of this article initially published online, the ‘Foxp2EGFP’ and ‘Foxp2ΔEGFP’ labels in Figure 7 are incorrect. The correct labels should be ‘Foxp3EGFP’ and ‘Foxp3ΔEGFP’, respectively. Also, Supplementary Tables 1-3 truncated early. The errors have been corrected for all versions of the article.

References

  1. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  Google Scholar 

  2. Fontenot, J.D. & Rudensky, A.Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6, 331–337 (2005).

    Article  CAS  Google Scholar 

  3. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  Google Scholar 

  4. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  5. Bensinger, S.J., Bandeira, A., Jordan, M.S., Caton, A.J. & Laufer, T.M. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J. Exp. Med. 194, 427–438 (2001).

    Article  CAS  Google Scholar 

  6. Cabarrocas, J. et al. Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proc. Natl. Acad. Sci. USA 103, 8453–8458 (2006).

    Article  CAS  Google Scholar 

  7. Hsieh, C.S., Zheng, Y., Liang, Y., Fontenot, J.D. & Rudensky, A.Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol. 7, 401–410 (2006).

    Article  CAS  Google Scholar 

  8. Pacholczyk, R., Ignatowicz, H., Kraj, P. & Ignatowicz, L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 25, 249–259 (2006).

    Article  CAS  Google Scholar 

  9. Lyon, M.F., Peters, J., Glenister, P.H., Ball, S. & Wright, E. The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc. Natl. Acad. Sci. USA 87, 2433–2437 (1990).

    Article  CAS  Google Scholar 

  10. Godfrey, V.L., Wilkinson, J.E. & Russell, L.B. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 138, 1379–1387 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  12. Lin, W. et al. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J. Allergy Clin. Immunol. 116, 1106–1115 (2005).

    Article  CAS  Google Scholar 

  13. Chatila, T.A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000).

    Article  CAS  Google Scholar 

  14. Wildin, R.S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  Google Scholar 

  15. Bennett, C.L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  Google Scholar 

  16. Kawahata, K. et al. Generation of CD4+CD25+ regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J. Immunol. 168, 4399–4405 (2002).

    Article  CAS  Google Scholar 

  17. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  Google Scholar 

  18. van Santen, H.M., Benoist, C. & Mathis, D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J. Exp. Med. 200, 1221–1230 (2004).

    Article  CAS  Google Scholar 

  19. Gavin, M.A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA 103, 6659–6664 (2006).

    Article  CAS  Google Scholar 

  20. Taguchi, O. & Takahashi, T. Administration of anti-interleukin-2 receptor α antibody in vivo induces localized autoimmune disease. Eur. J. Immunol. 26, 1608–1612 (1996).

    Article  CAS  Google Scholar 

  21. McHugh, R.S. & Shevach, E.M. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol. 168, 5979–5983 (2002).

    Article  CAS  Google Scholar 

  22. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  Google Scholar 

  23. Stroud, J.C. et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14, 159–166 (2006).

    Article  CAS  Google Scholar 

  24. Lopes, J.E. et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J. Immunol. 177, 3133–3142 (2006).

    Article  CAS  Google Scholar 

  25. Haribhai, D. et al. Regulatory T cells dynamically control the primary immune response to foreign antigen. J. Immunol. (in the press).

  26. Bendelac, A., Matzinger, P., Seder, R.A., Paul, W.E. & Schwartz, R.H. Activation events during thymic selection. J. Exp. Med. 175, 731–742 (1992).

    Article  CAS  Google Scholar 

  27. Feng, C. et al. A potential role for CD69 in thymocyte emigration. Int. Immunol. 14, 535–544 (2002).

    Article  CAS  Google Scholar 

  28. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  CAS  Google Scholar 

  29. Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).

    Article  CAS  Google Scholar 

  30. Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med. 199, 303–313 (2004).

    Article  CAS  Google Scholar 

  31. Izcue, A., Coombes, J.L. & Powrie, F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev. 212, 256–271 (2006).

    Article  CAS  Google Scholar 

  32. Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  Google Scholar 

  33. Gavin, M.A., Clarke, S.R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat. Immunol. 3, 33–41 (2002).

    Article  CAS  Google Scholar 

  34. Chen, Z., Herman, A.E., Matos, M., Mathis, D. & Benoist, C. Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J. Exp. Med. 202, 1387–1397 (2005).

    Article  CAS  Google Scholar 

  35. Sugimoto, N. et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18, 1197–1209 (2006).

    Article  CAS  Google Scholar 

  36. Sun, H., Lu, B., Li, R.Q., Flavell, R.A. & Taneja, R. Defective T cell activation and autoimmune disorder in Stra13-deficient mice. Nat. Immunol. 2, 1040–1047 (2001).

    Article  CAS  Google Scholar 

  37. He, Y.W. Orphan nuclear receptors in T lymphocyte development. J. Leukoc. Biol. 72, 440–446 (2002).

    CAS  PubMed  Google Scholar 

  38. Glimcher, L.H., Townsend, M.J., Sullivan, B.M. & Lord, G.M. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol. 4, 900–911 (2004).

    Article  CAS  Google Scholar 

  39. Kim, C.H. et al. Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. J. Clin. Invest. 107, 595–601 (2001).

    Article  CAS  Google Scholar 

  40. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  41. Schubert, L.A., Jeffery, E., Zhang, Y., Ramsdell, F. & Ziegler, S.F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 276, 37672–37679 (2001).

    Article  CAS  Google Scholar 

  42. Bettelli, E., Dastrange, M. & Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA 102, 5138–5143 (2005).

    Article  CAS  Google Scholar 

  43. Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  Google Scholar 

  44. Almeida, A.R., Zaragoza, B. & Freitas, A.A. Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4+CD25+ regulatory T cells is indexed to the number of IL-2-producing cells. J. Immunol. 177, 192–200 (2006).

    Article  CAS  Google Scholar 

  45. Peffault de Latour, R. et al. Ontogeny, function, and peripheral homeostasis of regulatory T cells in the absence of interleukin-7. Blood 108, 2300–2306 (2006).

    Article  CAS  Google Scholar 

  46. Grossman, W.J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).

    Article  CAS  Google Scholar 

  47. Gondek, D.C., Lu, L.F., Quezada, S.A., Sakaguchi, S. & Noelle, R.J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786 (2005).

    Article  CAS  Google Scholar 

  48. Zhao, D.M., Thornton, A.M., DiPaolo, R.J. & Shevach, E.M. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood 107, 3925–3932 (2006).

    Article  CAS  Google Scholar 

  49. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  Google Scholar 

  50. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Booth, J. Ziegelbauer and B. Edwards for animal care; I. Williams-McClain for cell sorting; and W. Grossman, J. Verbsky and J.M. Routes for critical reading of the manuscript. Supported by the National Institutes of Health (2R01 AI065617 to T.A.C. and R01 AI47154 to C.B.W.), the Nickolett and the D.B. and Marjorie Reinhart Family Foundations (C.B.W.) and the American Heart Association (0525142Y to W.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Calvin B Williams or Talal A Chatila.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Generation of Foxp3ΔEGFP mice. (PDF 251 kb)

Supplementary Table 1

Overlap among gene expression profiles of Foxp3ΔEGFP/+ and Foxp3EGFP/+ T cells. (PDF 113 kb)

Supplementary Table 2

Overlap among gene expression profiles of Foxp3ΔEGFP/+ and Foxp3EGFP/+ T cells. (PDF 80 kb)

Supplementary Table 3

Differential gene expression between Foxp3ΔEGFP/+ and Foxp3EGFP/+ cells. (PDF 145 kb)

Supplemental Video 1

The Foxp3-EGFP fusion protein is not found in the nucleus. A frozen lymph node section from a Foxp3ΔEGFP male was stained with anti-GFP/Alexa488 (green) and the DNA stain TO-PRO-3™ (red) (both were obtained from Molecular Probes), then scanned by confocal microscopy (1200X magnification) at 122nm intervals. Images from a representative EGFP+ cell were compiled into a video using Quicktime 7 Pro software (31 images, 6 frames/second). EGFP staining did not co-localize with TO-PRO-3™ (nuclear) staining in any of the images. (MOV 3055 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, W., Haribhai, D., Relland, L. et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 8, 359–368 (2007). https://doi.org/10.1038/ni1445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing