Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI

This article has been updated

Abstract

Epithelial cells (ECs) transport class-switched immunoglobulin G (IgG) and IgA antibodies across mucous membranes. Whether ECs initiate class switching remains unknown. Here we found that ECs lining tonsillar crypts formed pockets populated by B cells expressing activation-induced cytidine deaminase (AID), an enzyme associated with ongoing class switching. ECs released B cell–activating AID-inducing factors after sensing microbial products through Toll-like receptors. The resulting class switching was amplified by thymic stromal lymphopoietin, an epithelial interleukin 7–like cytokine that enhanced the B cell 'licensing' function of dendritic cells, and was restrained by secretory leukocyte protease inhibitor, an epithelial homeostatic protein that inhibited AID induction in B cells. Thus, ECs may function as mucosal 'guardians' orchestrating frontline IgG and IgA class switching through a Toll-like receptor–inducible signaling program regulated by secretory leukocyte protease inhibitor.

NOTE: In the version of this article initially published online, the middle label above Figure 6c is incorrect. The correct label should be ‘BAFF’. The error has been corrected for all versions of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tonsillar ECs express the AID-inducing ligand BAFF and form mucosal pockets infiltrated by AID-expressing B cells.
Figure 2: ECs release BAFF and IL-10 and induce AID expression as well as IgG and IgA class switching in B cells after sensing viral RNA.
Figure 3: ECs exposed to viral RNA induce class switching by activating B cells through BAFF.
Figure 4: Tonsillar ECs interact closely with BAFF-expressing DCs and upregulate the DC-stimulating cytokine TSLP in response to viral RNA.
Figure 5: TSLP amplifies EC-induced class switching by stimulating DCs to produce more BAFF.
Figure 6: Tonsillar ECs express SLPI and form intraepithelial pockets containing SLPI+ B cells.
Figure 7: SLPI negatively regulates class switching in B cells exposed to viral RNA, BAFF and IL-10.

Similar content being viewed by others

Change history

  • 08 February 2007

    In the version of this article initially published online, the middle label above Figure 6c is incorrect. The correct label should be ‘BAFF’. The error has been corrected for all versions of the article.

References

  1. Nagler-Anderson, C. Man the barrier! Strategic defences in the intestinal mucosa. Nat. Rev. Immunol. 1, 59–67 (2001).

    Article  CAS  Google Scholar 

  2. Neutra, M.R., Mantis, N.J. & Kraehenbuhl, J.P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol. 2, 1004–1009 (2001).

    Article  CAS  Google Scholar 

  3. Hornef, M.W., Wick, M.J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat. Immunol. 3, 1033–1040 (2002).

    Article  CAS  Google Scholar 

  4. Kiyono, H. & Fukuyama, S. NALT- versus Peyer's-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4, 699–710 (2004).

    Article  CAS  Google Scholar 

  5. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  Google Scholar 

  6. Abreu, M.T., Fukata, M. & Arditi, M. TLR signaling in the gut in health and disease. J. Immunol. 174, 4453–4460 (2005).

    Article  CAS  Google Scholar 

  7. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  Google Scholar 

  8. Ganz, T. & Lehrer, R.I. Antimicrobial peptides of vertebrates. Curr. Opin. Immunol. 10, 41–44 (1998).

    Article  CAS  Google Scholar 

  9. Hooper, L.V., Stappenbeck, T.S., Hong, C.V. & Gordon, J.I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 4, 269–273 (2003).

    Article  CAS  Google Scholar 

  10. Hiemstra, P.S., Fernie-King, B.A., McMichael, J., Lachmann, P.J. & Sallenave, J.M. Antimicrobial peptides: mediators of innate immunity as templates for the development of novel anti-infective and immune therapeutics. Curr. Pharm. Des. 10, 2891–2905 (2004).

    Article  CAS  Google Scholar 

  11. Yang, D. et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Article  CAS  Google Scholar 

  12. Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298, 1025–1029 (2002).

    Article  CAS  Google Scholar 

  13. Kelsall, B.L. & Rescigno, M. Mucosal dendritic cells in immunity and inflammation. Nat. Immunol. 5, 1091–1095 (2004).

    Article  CAS  Google Scholar 

  14. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  15. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    Article  CAS  Google Scholar 

  16. Fagarasan, S. & Honjo, T. Intestinal IgA synthesis: regulation of front-line body defences. Nat. Rev. Immunol. 3, 63–72 (2003).

    Article  CAS  Google Scholar 

  17. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    Article  CAS  Google Scholar 

  18. Watanabe, N. et al. Human thymic stromal lymphopoietin promotes dendritic cell–mediated CD4+ T cell homeostatic expansion. Nat. Immunol. 5, 426–434 (2004).

    Article  CAS  Google Scholar 

  19. Brandtzaeg, P. et al. The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171, 45–87 (1999).

    Article  CAS  Google Scholar 

  20. Brandtzaeg, P., Baekkevold, E.S. & Morton, H.C. From B to A the mucosal way. Nat. Immunol. 2, 1093–1094 (2001).

    Article  CAS  Google Scholar 

  21. Stavnezer, J. Antibody class switching. Adv. Immunol. 61, 79–146 (1996).

    Article  CAS  Google Scholar 

  22. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  Google Scholar 

  23. Calame, K.L. Plasma cells: finding new light at the end of B cell development. Nat. Immunol. 2, 1103–1108 (2001).

    Article  CAS  Google Scholar 

  24. Kunkel, E.J. et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J. Clin. Invest. 111, 1001–1010 (2003).

    Article  CAS  Google Scholar 

  25. Wilson, E. & Butcher, E.C. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J. Exp. Med. 200, 805–809 (2004).

    Article  CAS  Google Scholar 

  26. Suzuki, K., Meek, B., Doi, Y., Honjo, T. & Fagarasan, S. Two distinctive pathways for recruitment of naive and primed IgM+ B cells to the gut lamina propria. Proc. Natl. Acad. Sci. USA 102, 2482–2486 (2005).

    Article  CAS  Google Scholar 

  27. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).

    Article  CAS  Google Scholar 

  28. Macpherson, A.J. et al. IgA production without μ or δ chain expression in developing B cells. Nat. Immunol. 2, 625–631 (2001).

    Article  CAS  Google Scholar 

  29. Litinskiy, M.B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    Article  CAS  Google Scholar 

  30. Macpherson, A.J. & Lamarre, A. BLySsful interactions between DCs and B cells. Nat. Immunol. 3, 798–800 (2002).

    Article  CAS  Google Scholar 

  31. Macpherson, A.J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  Google Scholar 

  32. Fagarasan, S. & Honjo, T. T-Independent immune response: new aspects of B cell biology. Science 290, 89–92 (2000).

    Article  CAS  Google Scholar 

  33. Woof, J.M. & Mestecky, J. Mucosal immunoglobulins. Immunol. Rev. 206, 64–82 (2005).

    Article  CAS  Google Scholar 

  34. Brandtzaeg, P. & Prydz, H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311, 71–73 (1984).

    Article  CAS  Google Scholar 

  35. Mostov, K.E. & Simister, N.E. Transcytosis. Cell 43, 389–390 (1985).

    Article  CAS  Google Scholar 

  36. Mostov, K.E. & Deitcher, D.L. Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell 46, 613–621 (1986).

    Article  CAS  Google Scholar 

  37. Johansen, F.E. et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med. 190, 915–922 (1999).

    Article  CAS  Google Scholar 

  38. Spiekermann, G.M. et al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J. Exp. Med. 196, 303–310 (2002).

    Article  CAS  Google Scholar 

  39. Yoshida, M. et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20, 769–783 (2004).

    Article  CAS  Google Scholar 

  40. Kinoshita, K., Harigai, M., Fagarasan, S., Muramatsu, M. & Honjo, T. A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs. Proc. Natl. Acad. Sci. USA 98, 12620–12623 (2001).

    Article  CAS  Google Scholar 

  41. Graeme-Cook, F., Bhan, A.K. & Harris, N.L. Immunohistochemical characterization of intraepithelial and subepithelial mononuclear cells of the upper airways. Am. J. Pathol. 143, 1416–1422 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Banchereau, J. & Steinman, R. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  43. Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    Article  CAS  Google Scholar 

  44. Cerutti, A., Qiao, X. & He, B. Plasmacytoid dendritic cells and the regulation of immunoglobulin heavy chain class switching. Immunol. Cell Biol. 83, 554–562 (2005).

    Article  CAS  Google Scholar 

  45. Ziegler, S.F. & Liu, Y.J. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat. Immunol. 7, 709–714 (2006).

    Article  CAS  Google Scholar 

  46. Jin, F.Y., Nathan, C., Radzioch, D. & Ding, A. Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell 88, 417–426 (1997).

    Article  CAS  Google Scholar 

  47. Zhu, J. et al. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111, 867–878 (2002).

    Article  CAS  Google Scholar 

  48. Taggart, C.C. et al. Secretory leucoprotease inhibitor binds to NF-κB binding sites in monocytes and inhibits p65 binding. J. Exp. Med. 202, 1659–1668 (2005).

    Article  CAS  Google Scholar 

  49. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  CAS  Google Scholar 

  50. He, B., Qiao, X. & Cerutti, A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J. Immunol. 173, 4479–4491 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Nathan (Weill Medical College of Cornell University) and M. Rescigno (European Institute of Oncology) for reagents and discussions. Supported by the National Institutes of Health (AI057653 to A.C.; and T32 AI07621, supporting W.X.).

Author information

Authors and Affiliations

Authors

Contributions

W.X. designed and did research and analyzed data; B.H., M.S. and M.D. did research; A. Chiu provided tissue samples and discussed data; A. Chadburn and D.M.K. provided tissue samples; A.D. provided reagents, discussed data and edited the paper; P.A.S. analyzed and discussed data; and A. Cerutti designed research, analyzed data and wrote the paper.

Corresponding author

Correspondence to Andrea Cerutti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Primary oral ECs lack contaminating DCs and express BAFF. (PDF 185 kb)

Supplementary Fig. 2

Intestinal and epidermal ECs express BAFF and TLR3. (PDF 195 kb)

Supplementary Fig. 3

Intestinal and epidermal ECs express TLR9. (PDF 153 kb)

Supplementary Fig. 4

B cells up-regulate TLR3 expression upon exposure to viral RNA and BAFF. (PDF 194 kb)

Supplementary Fig. 5

ECs stimulate IgD+ B cells to undergo IgG and IgA CSR. (PDF 120 kb)

Supplementary Fig. 6

ECs stimulate IgD+ B cells to produce broadly reactive IgG and IgM antibodies. (PDF 135 kb)

Supplementary Fig. 7

Phenotype of myeloid DCs. (PDF 126 kb)

Supplementary Fig. 8

Tonsillar ECs and intraepithelial B cells contain SLPI. (PDF 136 kb)

Supplementary Fig. 9

SLPI inhibits IgG and IgA production in IgD+ B cells exposed to CD40L, IL-4 and IL-10. (PDF 65 kb)

Supplementary Fig. 10

ECs induce frontline IgG and IgA class switching through a TLR-inducible SLPI-regulated epithelial pathway. (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., He, B., Chiu, A. et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat Immunol 8, 294–303 (2007). https://doi.org/10.1038/ni1434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing