Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways

A Corrigendum to this article was published on 01 January 2008

This article has been updated

Abstract

Most dendritic cell (DC) responses to Toll-like receptor (TLR) ligands depend on the activation of mitogen-activated protein kinases (MAPKs), but the contributions of the many MAPK-activated kinases (MKs) that act 'downstream' of the MAPKs Erk and p38 are not known. Here we sought to determine which MKs are required for acute TLR-driven, MAPK-dependent DC endocytic responses. Two specific and structurally different inhibitors of the MK Rsk suppressed TLR-induced endocytosis, thus defining in DCs a specific requirement for MKs in TLR responses. In addition, we identify in DCs a previously unknown configuration of the MAPK system whereby Rsk is activated not only by Erk but also by p38 through the intermediates MK2 and MK3. Thus, in DCs, p38 contributes to the activation of all known MK families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MK2 and MK3, but neither MSK1 and MSK2 nor MNK1 and MNK2, are involved in TLR-induced macropinocytosis.
Figure 2: The Rsk inhibitors BI-D1870 and SL0101 block TLR-induced macropinocytosis.
Figure 3: Rsk activity in DCs is controlled by both the Erk1/2 and p38 pathways.
Figure 4: Activation of Rsk by p38 in DCs but not other cell types.
Figure 5: MK2 and MK3 in p38-induced phosphorylation of Rsk at Ser386 in DCs.
Figure 6: An Erk pathway inhibitor is sufficient to completely block LPS-induced macropinocytosis in DCs lacking both MK2 and MK3.

Similar content being viewed by others

Change history

  • 16 November 2007

    In the version of this article initially published, the Author Contributions section was incorrect. The correct author contributions are as follows: R.Z and C.W designed the study, interpreted the data and wrote the manuscript; R.Z. did the experiments; N.R. and M.G. provided MK2-null mice and generated embryonic stem cells carrying a targeted allele of MK3; J.S.C.A. provided advice and MSK1-MSK2-null mice and generated MK3-null mice from the MK3 embryonic stem cells provided by N.R. and M.G. The error has been corrected in the PDF version of the article.

References

  1. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Reis e Sousa, C. Dendritic cells in a mature age. Nat. Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Trombetta, E.S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. MacAry, P.A. et al. Mobilization of MHC class I molecules from late endosomes to the cell surface following activation of CD34-derived human Langerhans cells. Proc. Natl. Acad. Sci. USA 98, 3982–3987 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418, 988–994 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–63 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shin, J.S. et al. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444, 115–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. van Niel, G. et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 25, 885–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Blander, J.M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014–1018 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. West, M.A. et al. Enhanced dendritic cell antigen capture via Toll-like receptor-induced actin remodeling. Science 305, 1153–1157 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lelouard, H. et al. Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417, 177–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. O'Neill, L.A. How Toll-like receptors signal: what we know and what we don't know. Curr. Opin. Immunol. 18, 3–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hauge, C. & Frodin, M. RSK and MSK in MAP kinase signalling. J. Cell Sci. 119, 3021–3023 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Gaestel, M. MAPKAP kinases–-MKs–-two's company, three's a crowd. Nat. Rev. Mol. Cell Biol. 7, 120–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Roux, P.P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deak, M., Clifton, A.D., Lucocq, L.M. & Alessi, D.R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Waskiewicz, A.J., Flynn, A., Proud, C.G. & Cooper, J.A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909–1920 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frodin, M., Jensen, C.J., Merienne, K. & Gammeltoft, S. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J. 19, 2924–2934 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roux, P.P., Richards, S.A. & Blenis, J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol. Cell. Biol. 23, 4796–4804 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dummler, B.A. et al. Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types. J. Biol. Chem. 280, 13304–13314 (2005).

    Article  PubMed  Google Scholar 

  21. McCoy, C.E., Campbell, D.G., Deak, M., Bloomberg, G.B. & Arthur, J.S. MSK1 activity is controlled by multiple phosphorylation sites. Biochem. J. 387, 507–517 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fisher, T.L. & Blenis, J. Evidence for two catalytically active kinase domains in pp90rsk. Mol. Cell. Biol. 16, 1212–1219 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frodin, M. et al. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J. 21, 5396–5407 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rousseau, S. et al. Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs. EMBO J. 21, 6505–6514 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neininger, A. et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem. 277, 3065–3068 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kotlyarov, A. et al. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat. Cell Biol. 1, 94–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Lavoie, J.N., Hickey, E., Weber, L.A. & Landry, J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem. 268, 24210–24214 (1993).

    CAS  PubMed  Google Scholar 

  28. Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 22, 2788–2797 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomson, S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ueda, T., Watanabe-Fukunaga, R., Fukuyama, H., Nagata, S. & Fukunaga, R. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol. Cell. Biol. 24, 6539–6549 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuma, Y. et al. BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo. J. Biol. Chem. 280, 19472–19479 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Ronkina, N. et al. The mitogen-activated protein kinase (MAPK)-activated protein kinases MK2 and MK3 cooperate in stimulation of tumor necrosis factor biosynthesis and stabilization of p38 MAPK. Mol. Cell. Biol. 27, 170–181 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Dalby, K.N., Morrice, N., Caudwell, F.B., Avruch, J. & Cohen, P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J. Biol. Chem. 273, 1496–1505 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Jensen, C.J. et al. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem. 274, 27168–27176 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Vanhaesebroeck, B. & Alessi, D.R. The PI3K–PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dufresne, S.D. et al. Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice. Mol. Cell. Biol. 21, 81–87 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen, M.S., Zhang, C., Shokat, K.M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308, 1318–1321 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sapkota, G.P. et al. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem. J. 401, 29–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Smith, J.A. et al. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res. 65, 1027–1034 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Vik, T.A. & Ryder, J.W. Identification of serine 380 as the major site of autophosphorylation of Xenopus pp90rsk. Biochem. Biophys. Res. Commun. 235, 398–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Hawkins, J., Zheng, S., Frantz, B. & LoGrasso, P. p38 map kinase substrate specificity differs greatly for protein and peptide substrates. Arch. Biochem. Biophys. 382, 310–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Kotlyarov, A. et al. Distinct cellular functions of MK2. Mol. Cell. Biol. 22, 4827–4835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Alessi, D.R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rane, M.J. et al. p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils. J. Biol. Chem. 276, 3517–3523 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, R. et al. Hsp27 regulates Akt activation and PMN apoptosis by scaffolding MK2 to Akt signal complex. J. Biol. Chem. 282, 21598–21608 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Cohen, M.S., Hadjivassiliou, H. & Taunton, J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat. Chem. Biol. 3, 156–160 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mathur, R.K., Awasthi, A., Wadhone, P., Ramanamurthy, B. & Saha, B. Reciprocal CD40 signals through p38MAPK and ERK-1/2 induce counteracting immune responses. Nat. Med. 10, 540–544 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Douville, E. & Downward, J. EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2. Oncogene 15, 373–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Buxade, M. et al. The Mnks are novel components in the control of TNF-α biosynthesis and phosphorylate and regulate hnRNP A1. Immunity 23, 177–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi, E. et al. p90(RSK) is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. J. Biol. Chem. 274, 20206–20214 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. West, M.A., Bretscher, M.S. & Watts, C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J. Cell Biol. 109, 2731–2739 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Woo, M.S., Ohta, Y., Rabinovitz, I., Stossel, T.P. & Blenis, J. Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol. Cell. Biol. 24, 3025–3035 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wiggin, G.R. et al. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol. Cell. Biol. 22, 2871–2881 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cornish, G.H., Sinclair, L.V. & Cantrell, D.A. Differential regulation of T-cell growth by IL-2 and IL-15. Blood 108, 600–608 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Alessi, D.R. et al. Assay and expression of mitogen-activated protein kinase, MAP kinase kinase, and Raf. Methods Enzymol. 255, 279–290 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Frödin and P. Cohen for suggestions and discussions; N. Shpiro for BI-D1870 synthesis; C. Proud (University of British Columbia), M. Buxade (University of British Columbia) and R. Fukunaga (Osaka University) for cells lacking MNK1 and MNK2; D. Alessi (University of Dundee) for anti-Rsk2 and for comments on the manuscript; B. Collins and J. Hastie for reagents and for help with the Rsk assays; and M. West and P. Mollahan for collaboration and technical assistance. Supported by the Medical Research Council (C.W. and J.C.S.A.) and Deutsche Forschungsgemeinschaft (M.G.).

Author information

Authors and Affiliations

Authors

Contributions

R.Z. and C.W. designed the study, interpreted the data and wrote the manuscript; R.Z. did the experiments; N.R. and M.G. provided MK2-null mice and the targeting vector for generation of MK3-null mice; J.S.C.A. generated MK3-null mice and MSK1-MSK2-null mice and gave advice.

Corresponding author

Correspondence to Colin Watts.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 1898 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaru, R., Ronkina, N., Gaestel, M. et al. The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nat Immunol 8, 1227–1235 (2007). https://doi.org/10.1038/ni1517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1517

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing