Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction

Abstract

In progressive viral infection, antiviral T cell function is impaired by poorly understood mechanisms. Here we report that the inhibitory immunoregulatory receptor CTLA-4 was selectively upregulated in human immunodeficiency virus (HIV)–specific CD4+ T cells but not CD8+ T cells in all categories of HIV-infected subjects evaluated, with the exception of rare people able to control viremia in the absence of antiretroviral therapy. CTLA-4 expression correlated positively with disease progression and negatively with the capacity of CD4+ T cells to produce interleukin 2 in response to viral antigen. Most HIV-specific CD4+ T cells coexpressed CTLA-4 and another inhibitory immunoregulatory receptor, PD-1. In vitro blockade of CTLA-4 augmented HIV-specific CD4+ T cell function. These data, indicating a reversible immunoregulatory pathway selectively associated with CD4+ T cell dysfunction, provide a potential target for immunotherapy in HIV-infected patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CTLA-4 is upregulated in HIV-specific CD4+ T cells.
Figure 2: Markers of disease progression are associated with CTLA-4 expression and failure to produce IL-2, but not with IFN-γ production, in HIV-specific CD4+ T cells.
Figure 3: Effect of viral load control by antiviral therapy on CTLA-4 expression in HIV-specific CD4+ T cells.
Figure 4: CTLA-4 blockade restores HIV-specific but not CMV-specific CD4+ T cell function.
Figure 5: Relationship between the expression of CTLA-4 and PD-1 by HIV-specific CD4+ T cells and a comparison of the functional effect of cosignaling blockade.

Similar content being viewed by others

References

  1. Greenwald, R.J., Freeman, G.J. & Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol. 23, 515–548 (2005).

    PubMed  Google Scholar 

  2. Chen, L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 4, 336–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8 + T cells leads to reversible immune dysfunction. Nat Med (2006).

  7. Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med. 203, 2281–2292 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leach, D.R., Krummel, M.F. & Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Hodi, F.S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. USA 100, 4712–4717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phan, G.Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Egen, J.G., Kuhns, M.S. & Allison, J.P. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 3, 611–618 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. von Boehmer, H. Mechanisms of suppression by suppressor T cells. Nat. Immunol. 6, 338–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Anderson, K.M., Czinn, S.J., Redline, R.W. & Blanchard, T.G. Induction of CTLA-4-mediated anergy contributes to persistent colonization in the murine model of gastric Helicobacter pylori infection. J. Immunol. 176, 5306–5313 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Zubairi, S., Sanos, S.L., Hill, S. & Kaye, P.M. Immunotherapy with OX40L-Fc or anti-CTLA-4 enhances local tissue responses and killing of Leishmania donovani. Eur. J. Immunol. 34, 1433–1440 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Gomes, N.A., Gattass, C.R., Barreto-De-Souza, V., Wilson, M.E. & DosReis, G.A. TGF-beta mediates CTLA-4 suppression of cellular immunity in murine kalaazar. J. Immunol. 164, 2001–2008 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Graefe, S.E., Jacobs, T., Wachter, U., Broker, B.M. & Fleischer, B. CTLA-4 regulates the murine immune response to Trypanosoma cruzi infection. Parasite Immunol. 26, 19–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Jacobs, T., Graefe, S.E., Niknafs, S., Gaworski, I. & Fleischer, B. Murine malaria is exacerbated by CTLA-4 blockade. J. Immunol. 169, 2323–2329 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Bachmann, M.F. et al. Normal responsiveness of CTLA-4-deficient anti-viral cytotoxic T cells. J. Immunol. 160, 95–100 (1998).

    CAS  PubMed  Google Scholar 

  20. Homann, D. et al. Lack of intrinsic CTLA-4 expression has minimal effect on regulation of antiviral T-cell immunity. J. Virol. 80, 270–280 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Day, C.L. & Walker, B.D. Progress in defining CD4 helper cell responses in chronic viral infections. J. Exp. Med. 198, 1773–1777 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hryniewicz, A. et al. CTLA-4 blockade decreases TGF-β, indoleamine 2,3-dioxygenase, and viral RNA expression in tissues of SIVmac251-infected macaques. Blood 108, 3834–3842 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaunders, J.J. et al. Infection of CD127+ (interleukin-7 receptor+) CD4+ cells and overexpression of CTLA-4 are linked to loss of antigen-specific CD4 T cells during primary human immunodeficiency virus type 1 infection. J. Virol. 80, 10162–10172 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leng, Q., Bentwich, Z., Magen, E., Kalinkovich, A. & Borkow, G. CTLA-4 upregulation during HIV infection: association with anergy and possible target for therapeutic intervention. AIDS 16, 519–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Thio, C.L. et al. Cytotoxic T-lymphocyte antigen 4 gene and recovery from hepatitis B virus infection. J. Virol. 78, 11258–11262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Addo, M.M. et al. Fully differentiated HIV-1 specific CD8+ T effector cells are more frequently detectable in controlled than in progressive HIV-1 infection. PLoS ONE 2, e321 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Teft, W.A., Kirchhof, M.G. & Madrenas, J. A molecular perspective of CTLA-4 function. Annu. Rev. Immunol. 24, 65–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Krummel, M.F. & Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Kaufmann, D.E. et al. Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of Gag and Nef and the presence of broadly recognized peptides. J. Virol. 78, 4463–4477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Palmer, S. et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol. 41, 4531–4536 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kinter, A.L. et al. CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J. Exp. Med. 200, 331–343 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nilsson, J. et al. HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood 108, 3808–3817 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kinter, A. et al. Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc. Natl. Acad. Sci. USA 104, 3390–3395 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harari, A., Petitpierre, S., Vallelian, F. & Pantaleo, G. Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 103, 966–972 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Iyasere, C.A. et al. Diminished proliferation of human immunodeficiency virus-specific CD4+ T cell is associated with diminished interleukin-2 (IL-2) production and is recovered by exogenous IL-2. J. Virol. 77, 10900–10909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palmer, B.E., Boritz, E. & Wilson, C.C. Effects of sustained HIV-1 plasma viremia on HIV-1 Gag-specific CD4+ T cell maturation and function. J. Immunol. 172, 3337–3347 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Tilton, J.C. et al. Changes in paracrine IL-2 requirement, CCR7 expression, frequency, and cytokine secretion, of HIV-specific CD4+ T cells are a consequence of antigen load. J. Virol. 81, 2713–2725 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Sutmuller, R.P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parry, R.V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Betts, M.R. et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J. Virol. 75, 11983–11991 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dorfman, D.M., Brown, J.A., Shahsafaei, A. & Freeman, G.J. Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am. J. Surg. Pathol. 30, 802–810 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Boritz, E., Palmer, B.E. & Wilson, C.C. Human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells that proliferate in vitro detected in samples from most viremic subjects and inversely associated with plasma HIV-1 levels. J. Virol. 78, 12638–12646 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown, J.A. et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170, 1257–1266 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all study participants for their help, and J. Lieberman and C. Day for comments on the manuscript. Supported by the Harvard University Center for AIDS Research (D.E.K. and B.D.W.), Massachusetts General Hospital (Executive Committee on Research bridge funding grant to D.E.K.), the National Institutes of Health (B.D.W., E.S.R., D.G.K. and G.J.F.), the Foundation for the National Institutes of Health through the Grand Challenges in Global Health initiative (G.J.F.), the Howard Hughes Medical Institute (B.D.W.) and the Mark and Lisa Schwartz Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D.E.K. was responsible for the overall design and conduct; D.E.K., D.G.K., J.J.Z. and B.D.W. contributed to the experimental design; D.G.K., J.J.Z., M.B., J.M.C., A.D.K., G.J.F., E.S.R. and B.D.W. contributed intellectual input; D.E.K., D.G.K., F.P., E.W.M., T.M., S.P. and A.R. did experiments; F.P., A.P.-T., B.B., S.L.G., R.A., K.M. and E.S.R. provided clinical samples; B.Z. and G.J.F. provided monoclonal antibodies to PD-1 and PD-L1; M.T.W. provided technical assistance for flow cytometry; D.E.K., D.G.K. and B.D.W. wrote the paper; and B.D.W. provided supervision.

Corresponding author

Correspondence to Daniel E Kaufmann.

Ethics declarations

Competing interests

G.J.F. has patents and patent application for CTLA-4, PD-1 and PD-1 ligands and their use to modulate immune responses.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Methods (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufmann, D., Kavanagh, D., Pereyra, F. et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol 8, 1246–1254 (2007). https://doi.org/10.1038/ni1515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing