Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances in antigen processing and presentation

Abstract

Heterogeneous intracellular pathways and biochemical mechanisms are responsible for generating the glycoprotein complexes of peptide and major histocompatibility complex that are displayed on the surfaces of antigen-presenting cells for recognition by T lymphocytes. These pathways have a profound influence on the specificity of adaptive immunity and tolerance, as well as the context and consequences of antigen recognition by T cells in the thymus and periphery. The field of antigen processing and presentation has continued to advance since the publication of a focus issue on the topic in Nature Immunology in July 2004. Progress has been made on many fronts, including advances in understanding how proteases, accessory molecules and intracellular pathways influence peptide loading and antigen presentation in various cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MHC class I and class II peptide-binding domains.
Figure 2: The direct MHC class I processing pathway.
Figure 3: The MHC class II processing pathway.
Figure 4: Proposed pathways for cross-presentation by MHC class I molecules.

Similar content being viewed by others

References

  1. Kloetzel, P.M. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat. Immunol. 5, 661–669 (2004).

    CAS  PubMed  Google Scholar 

  2. Rock, K.L., York, I.A. & Goldberg, A.L. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 5, 670–677 (2004).

    CAS  PubMed  Google Scholar 

  3. Watts, C. The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat. Immunol. 5, 685–692 (2004).

    CAS  PubMed  Google Scholar 

  4. Ackerman, A.L. & Cresswell, P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol. 5, 678–684 (2004).

    CAS  PubMed  Google Scholar 

  5. Stern, L.J. & Wiley, D.C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2, 245–251 (1994).

    CAS  PubMed  Google Scholar 

  6. Glithero, A. et al. The crystal structure of H-2Db complexed with a partial peptide epitope suggests a major histocompatibility complex class I assembly intermediate. J. Biol. Chem. 281, 12699–12704 (2006).

    CAS  PubMed  Google Scholar 

  7. Carven, G.J. et al. Monoclonal antibodies specific for the empty conformation of HLA-DR1 reveal aspects of the conformational change associated with peptide binding. J. Biol. Chem. 279, 16561–16570 (2004).

    CAS  PubMed  Google Scholar 

  8. Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R. & Wearsch, P.A. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–157 (2005).

    CAS  PubMed  Google Scholar 

  9. Jensen, P.E., Weber, D.A., Thayer, W.P., Westerman, L.E. & Dao, C.T. Peptide exchange in MHC molecules. Immunol. Rev. 172, 229–238 (1999).

    CAS  PubMed  Google Scholar 

  10. Cresswell, P. Invariant chain structure and MHC class II function. Cell 84, 505–507 (1996).

    CAS  PubMed  Google Scholar 

  11. Carven, G.J. & Stern, L.J. Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry 44, 13625–13637 (2005).

    CAS  PubMed  Google Scholar 

  12. Weber, D.A., Evavold, B.D. & Jensen, P.E. Enhanced dissociation of HLA-DR-bound peptides in the presence of HLA-DM. Science 274, 618–620 (1996).

    CAS  PubMed  Google Scholar 

  13. Pashine, A. et al. Interaction of HLA-DR with an acidic face of HLA-DM disrupts sequence-dependent interactions with peptides. Immunity 19, 183–192 (2003).

    CAS  PubMed  Google Scholar 

  14. Belmares, M.P., Busch, R., Wucherpfennig, K.W., McConnell, H.M. & Mellins, E.D. Structural factors contributing to DM susceptibility of MHC class II-peptide complexes. J. Immunol. 169, 5109–5117 (2002).

    PubMed  Google Scholar 

  15. Chou, C.L. & Sadegh-Nasseri, S. HLA-DM recognizes the flexible conformation of major histocompatibility complex class II. J. Exp. Med. 192, 1697–1706 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lazarski, C.A. et al. The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity 23, 29–40 (2005).

    CAS  PubMed  Google Scholar 

  17. Lazarski, C.A., Chaves, F.A. & Sant, A.J. The impact of DM on MHC class II-restricted antigen presentation can be altered by manipulation of MHC-peptide kinetic stability. J. Exp. Med. 203, 1319–1328 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McFarland, B.J., Katz, J.F., Sant, A.J. & Beeson, C. Energetics and cooperativity of the hydrogen bonding and anchor interactions that bind peptides to MHC class II protein. J. Mol. Biol. 350, 170–183 (2005).

    CAS  PubMed  Google Scholar 

  19. Narayan, K. et al. HLA-DM targets the hydrogen bond between the histidine at position β81 and peptide to dissociate HLA-DR-peptide complexes. Nat. Immunol. 8, 92–100 (2007).

    CAS  PubMed  Google Scholar 

  20. Lovitch, S.B., Pu, Z. & Unanue, E.R. Amino-terminal flanking residues determine the conformation of a peptide-class II MHC complex. J. Immunol. 176, 2958–2968 (2006).

    CAS  PubMed  Google Scholar 

  21. Lovitch, S.B., Esparza, T.J., Schweitzer, G., Herzog, J. & Unanue, E.R. Activation of type B T cells after protein immunization reveals novel pathways of in vivo presentation of peptides. J. Immunol. 178, 122–133 (2007).

    CAS  PubMed  Google Scholar 

  22. De Wall, S.L. et al. Noble metals strip peptides from class II MHC proteins. Nat. Chem. Biol. 2, 197–201 (2006).

    CAS  PubMed  Google Scholar 

  23. Hornell, T.M. et al. Human dendritic cell expression of HLA-DO is subset specific and regulated by maturation. J. Immunol. 176, 3536–3547 (2006).

    CAS  PubMed  Google Scholar 

  24. Chen, X., Reed-Loisel, L.M., Karlsson, L. & Jensen, P.E. H2-O expression in primary dendritic cells. J. Immunol. 176, 3548–3556 (2006).

    CAS  PubMed  Google Scholar 

  25. Fallas, J.L., Yi, W., Draghi, N.A., O'Rourke, H.M. & Denzin, L.K. Expression patterns of H2-O in mouse B cells and dendritic cells correlate with cell function. J. Immunol. 178, 1488–1497 (2007).

    CAS  PubMed  Google Scholar 

  26. Chen, X. et al. Regulated expression of human histocompatibility leukocyte antigen (HLA)-DO during antigen-dependent and antigen-independent phases of B cell development. J. Exp. Med. 195, 1053–1062 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Glazier, K.S. et al. Germinal center B cells regulate their capability to present antigen by modulation of HLA-DO. J. Exp. Med. 195, 1063–1069 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Maric, M. et al. Defective antigen processing in GILT-free mice. Science 294, 1361–1365 (2001).

    CAS  PubMed  Google Scholar 

  29. Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E.S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634 (2005).

    CAS  PubMed  Google Scholar 

  30. Delamarre, L., Couture, R., Mellman, I. & Trombetta, E.S. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J. Exp. Med. 203, 2049–2055 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sercarz, E.E. & Maverakis, E. Mhc-guided processing: binding of large antigen fragments. Nat. Rev. Immunol. 3, 621–629 (2003).

    CAS  PubMed  Google Scholar 

  32. Mimura, Y. et al. Folding of an MHC class II-restricted tumor antigen controls its antigenicity via MHC-guided processing. Proc. Natl. Acad. Sci. USA 104, 5983–5988 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Davidson, H.W. & Watts, C. Epitope-directed processing of specific antigen by B lymphocytes. J. Cell Biol. 109, 85–92 (1989).

    CAS  PubMed  Google Scholar 

  34. Simitsek, P.D., Campbell, D.G., Lanzavecchia, A., Fairweather, N. & Watts, C. Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants. J. Exp. Med. 181, 1957–1963 (1995).

    CAS  PubMed  Google Scholar 

  35. Moss, C.X., Tree, T.I. & Watts, C. Reconstruction of a pathway of antigen processing and class II MHC peptide capture. EMBO J. 26, 2137–2147 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003).

    CAS  PubMed  Google Scholar 

  37. West, M.A. et al. Enhanced dendritic cell antigen capture via Toll-like receptor-induced actin remodeling. Science 305, 1153–1157 (2004).

    CAS  PubMed  Google Scholar 

  38. Santambrogio, L. et al. Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells. Nat. Immunol. 6, 1020–1028 (2005).

    CAS  PubMed  Google Scholar 

  39. Shin, J.S. et al. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444, 115–118 (2006).

    CAS  PubMed  Google Scholar 

  40. van Niel, G. et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 25, 885–894 (2006).

    CAS  PubMed  Google Scholar 

  41. Ohmura-Hoshino, M. et al. Inhibition of MHC class II expression and immune responses by c-MIR. J. Immunol. 177, 341–354 (2006).

    CAS  PubMed  Google Scholar 

  42. Matsuki, Y. et al. Novel regulation of MHC class II function in B cells. EMBO J. 26, 846–854 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Blander, J.M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).

    CAS  PubMed  Google Scholar 

  44. Blander, J.M. & Medzhitov, R. Regulation of phagosome maturation by signals from Toll-like receptors. Science 304, 1014–1018 (2004).

    CAS  PubMed  Google Scholar 

  45. Elliott, T. & Williams, A. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. Immunol. Rev. 207, 89–99 (2005).

    CAS  PubMed  Google Scholar 

  46. Sijts, A.J. & Pamer, E.G. Enhanced intracellular dissociation of major histocompatibility complex class I-associated peptides: a mechanism for optimizing the spectrum of cell surface-presented cytotoxic T lymphocyte epitopes. J. Exp. Med. 185, 1403–1411 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lewis, J.W. & Elliott, T. Evidence for successive peptide binding and quality control stages during MHC class I assembly. Curr. Biol. 8, 717–720 (1998).

    CAS  PubMed  Google Scholar 

  48. Howarth, M., Williams, A., Tolstrup, A.B. & Elliott, T. Tapasin enhances MHC class I peptide presentation according to peptide half-life. Proc. Natl. Acad. Sci. USA 101, 11737–11742 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Paulsson, K.M., Jevon, M., Wang, J.W., Li, S. & Wang, P. The double lysine motif of tapasin is a retrieval signal for retention of unstable MHC class I molecules in the endoplasmic reticulum. J. Immunol. 176, 7482–7488 (2006).

    CAS  PubMed  Google Scholar 

  50. Dick, T.P., Bangia, N., Peaper, D.R. & Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16, 87–98 (2002).

    CAS  PubMed  Google Scholar 

  51. Peaper, D.R., Wearsch, P.A. & Cresswell, P. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J. 24, 3613–3623 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Garbi, N., Tanaka, S., Momburg, F. & Hammerling, G.J. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat. Immunol. 7, 93–102 (2006).

    CAS  PubMed  Google Scholar 

  53. Kienast, A., Preuss, M., Winkler, M. & Dick, T.P. Redox regulation of peptide receptivity of major histocompatibility complex class I molecules by ERp57 and tapasin. Nat. Immunol. 8, 864–872 (2007).

    CAS  PubMed  Google Scholar 

  54. Chen, M. & Bouvier, M. Analysis of interactions in a tapasin-class I complex provides a mechanism for peptide selection. EMBO J. 26, 1681–1690 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wearsch, P.A. & Cresswell, P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat. Immunol. 8, 873–881 (2007).

    CAS  PubMed  Google Scholar 

  56. Park, B. et al. Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell 127, 369–382 (2006).

    CAS  PubMed  Google Scholar 

  57. York, I.A., Bhutani, N., Zendzian, S., Goldberg, A.L. & Rock, K.L. Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation. J. Immunol. 177, 1434–1443 (2006).

    CAS  PubMed  Google Scholar 

  58. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000).

    CAS  PubMed  Google Scholar 

  59. Yewdell, J.W. & Nicchitta, C.V. The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol. 27, 368–373 (2006).

    CAS  PubMed  Google Scholar 

  60. Yewdell, J.W. The seven dirty little secrets of major histocompatibility complex class I antigen processing. Immunol. Rev. 207, 8–18 (2005).

    CAS  PubMed  Google Scholar 

  61. Vabulas, R.M. & Hartl, F.U. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960–1963 (2005).

    CAS  PubMed  Google Scholar 

  62. Zook, M.B., Howard, M.T., Sinnathamby, G., Atkins, J.F. & Eisenlohr, L.C. Epitopes derived by incidental translational frameshifting give rise to a protective CTL response. J. Immunol. 176, 6928–6934 (2006).

    CAS  PubMed  Google Scholar 

  63. Hanada, K., Yewdell, J.W. & Yang, J.C. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427, 252–256 (2004).

    CAS  PubMed  Google Scholar 

  64. Vigneron, N. et al. An antigenic peptide produced by peptide splicing in the proteasome. Science 304, 587–590 (2004).

    CAS  PubMed  Google Scholar 

  65. Warren, E.H. et al. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313, 1444–1447 (2006).

    CAS  PubMed  Google Scholar 

  66. Shastri, N., Schwab, S. & Serwold, T. Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol. 20, 463–493 (2002).

    CAS  PubMed  Google Scholar 

  67. Reits, E. et al. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 20, 495–506 (2004).

    CAS  PubMed  Google Scholar 

  68. Guil, S. et al. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental. J. Biol. Chem. 281, 39925–39934 (2006).

    CAS  PubMed  Google Scholar 

  69. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    CAS  PubMed  Google Scholar 

  70. Saric, T. et al. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol. 3, 1169–1176 (2002).

    CAS  PubMed  Google Scholar 

  71. York, I.A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol. 3, 1177–1184 (2002).

    CAS  PubMed  Google Scholar 

  72. Chang, S.C., Momburg, F., Bhutani, N. & Goldberg, A.L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc. Natl. Acad. Sci. USA 102, 17107–17112 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kanaseki, T., Blanchard, N., Hammer, G.E., Gonzalez, F. & Shastri, N. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity 25, 795–806 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Reits, E. et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 18, 97–108 (2003).

    CAS  PubMed  Google Scholar 

  75. Spee, P. & Neefjes, J. TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur. J. Immunol. 27, 2441–2449 (1997).

    CAS  PubMed  Google Scholar 

  76. Lammert, E., Stevanovic, S., Brunner, J., Rammensee, H.G. & Schild, H. Protein disulfide isomerase is the dominant acceptor for peptides translocated into the endoplasmic reticulum. Eur. J. Immunol. 27, 1685–1690 (1997).

    CAS  PubMed  Google Scholar 

  77. Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol. 6, 689–697 (2005).

    CAS  PubMed  Google Scholar 

  78. Hammer, G.E., Gonzalez, F., Champsaur, M., Cado, D. & Shastri, N. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat. Immunol. 7, 103–112 (2006).

    CAS  PubMed  Google Scholar 

  79. Yan, J. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med. 203, 647–659 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. York, I.A., Brehm, M.A., Zendzian, S., Towne, C.F. & Rock, K.L. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc. Natl. Acad. Sci. USA 103, 9202–9207 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hammer, G.E., Gonzalez, F., James, E., Nolla, H. & Shastri, N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat. Immunol. 8, 101–108 (2007).

    CAS  PubMed  Google Scholar 

  82. Murata, S. et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349–1353 (2007).

    CAS  PubMed  Google Scholar 

  83. Nakagawa, T. et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280, 450–453 (1998).

    CAS  PubMed  Google Scholar 

  84. Groothuis, T.A. & Neefjes, J. The many roads to cross-presentation. J. Exp. Med. 202, 1313–1318 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bevan, M.J. Cross-priming. Nat. Immunol. 7, 363–365 (2006).

    CAS  PubMed  Google Scholar 

  86. Shen, L. & Rock, K.L. Priming of T cells by exogenous antigen cross-presented on MHC class I molecules. Curr. Opin. Immunol. 18, 85–91 (2006).

    CAS  PubMed  Google Scholar 

  87. den Haan, J.M., Lehar, S.M. & Bevan, M.J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Iyoda, T. et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. 195, 1289–1302 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

    CAS  PubMed  Google Scholar 

  90. Shen, L., Sigal, L.J., Boes, M. & Rock, K.L. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21, 155–165 (2004).

    CAS  PubMed  Google Scholar 

  91. Norbury, C.C. et al. CD8+ T cell cross-priming via transfer of proteasome substrates. Science 304, 1318–1321 (2004).

    CAS  PubMed  Google Scholar 

  92. Wolkers, M.C., Brouwenstijn, N., Bakker, A.H., Toebes, M. & Schumacher, T.N. Antigen bias in T cell cross-priming. Science 304, 1314–1317 (2004).

    CAS  PubMed  Google Scholar 

  93. Shen, L. & Rock, K.L. Cellular protein is the source of cross-priming antigen in vivo. Proc. Natl. Acad. Sci. USA 101, 3035–3040 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20, 395–425 (2002).

    CAS  PubMed  Google Scholar 

  95. Accapezzato, D. et al. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J. Exp. Med. 202, 817–828 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    CAS  PubMed  Google Scholar 

  97. Ackerman, A.L., Giodini, A. & Cresswell, P. A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity 25, 607–617 (2006).

    CAS  PubMed  Google Scholar 

  98. Wiertz, E.J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).

    CAS  PubMed  Google Scholar 

  99. Ackerman, A.L., Kyritsis, C. & Tamp, È.R. & Cresswell, P. Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat. Immunol. 6, 107–113 (2005).

    CAS  PubMed  Google Scholar 

  100. Burgdorf, S., Kautz, A., Bohnert, V., Knolle, P.A. & Kurts, C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316, 612–616 (2007).

    CAS  PubMed  Google Scholar 

  101. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    CAS  PubMed  Google Scholar 

  102. Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    CAS  PubMed  Google Scholar 

  103. Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

    CAS  PubMed  Google Scholar 

  104. Hatsuzawa, K. et al. Involvement of syntaxin 18, an endoplasmic reticulum (ER)-localized SNARE protein, in ER-mediated phagocytosis. Mol. Biol. Cell 17, 3964–3977 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Touret, N. et al. Quantitative and dynamic assessment of the contribution of the ER to phagosome formation. Cell 123, 157–170 (2005).

    CAS  PubMed  Google Scholar 

  106. Neijssen, J. et al. Cross-presentation by intercellular peptide transfer through gap junctions. Nature 434, 83–88 (2005).

    CAS  PubMed  Google Scholar 

  107. Zhou, D. et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22, 571–581 (2005).

    CAS  PubMed  Google Scholar 

  108. Dengjel, J. et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. USA 102, 7922–7927 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schmid, D., Pypaert, M. & Munz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007).

    CAS  PubMed  Google Scholar 

  110. Tewari, M.K., Sinnathamby, G., Rajagopal, D. & Eisenlohr, L.C. A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent. Nat. Immunol. 6, 287–294 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E Jensen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, P. Recent advances in antigen processing and presentation. Nat Immunol 8, 1041–1048 (2007). https://doi.org/10.1038/ni1516

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing