Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity

Abstract

The mechanisms responsible for the immunosuppression associated with sepsis or some chronic blood infections remain poorly understood. Here we show that infection with a malaria parasite (Plasmodium berghei) or simple systemic exposure to bacterial or viral Toll-like receptor ligands inhibited cross-priming. Reduced cross-priming was a consequence of downregulation of cross-presentation by activated dendritic cells due to systemic activation that did not otherwise globally inhibit T cell proliferation. Although activated dendritic cells retained their capacity to present viral antigens via the endogenous major histocompatibility complex class I processing pathway, antiviral responses were greatly impaired in mice exposed to Toll-like receptor ligands. This is consistent with a key function for cross-presentation in antiviral immunity and helps explain the immunosuppressive effects of systemic infection. Moreover, inhibition of cross-presentation was overcome by injection of dendritic cells bearing antigen, which provides a new strategy for generating immunity during immunosuppressive blood infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DCs activated in vivo downregulate cross-presentation.
Figure 2: Activation of DCs in vivo impairs cross-priming.
Figure 3: Activation stimuli downregulate the phagocytic activity of DCs in vivo.
Figure 4: Impaired antiviral responses in mice pretreated with TLR ligands.
Figure 5: Impaired presentation of HSV antigens in the lymph node of CpG-treated mice in a zosteriform model of infection.
Figure 6: Impairment of endogenous anti-HSV CTL responses in CpG-treated mice.
Figure 7: P. berghei infection causes systemic DC activation and downregulates cross-presentation.
Figure 8: Impaired cross-presentation in P. berghei-infected mice.

Similar content being viewed by others

References

  1. Wilson, N.S. & Villadangos, J.A. Regulation of antigen presentation and cross-presentation in the dendritic cell network: facts, hypothesis, and immunological implications. Adv. Immunol. 86, 241–305 (2005).

    Article  CAS  Google Scholar 

  2. Heath, W.R. et al. Cross-presentation dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004).

    Article  CAS  Google Scholar 

  3. Sigal, L.J., Crotty, S., Andino, R. & Rock, K.L. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398, 77–80 (1999).

    Article  CAS  Google Scholar 

  4. Melief, C.J. Mini-review: Regulation of cytotoxic T lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming? Eur. J. Immunol. 33, 2645–2654 (2003).

    Article  CAS  Google Scholar 

  5. Freigang, S., Egger, D., Bienz, K., Hengartner, H. & Zinkernagel, R.M. Endogenous neosynthesis vs. cross-presentation of viral antigens for cytotoxic T cell priming. Proc. Natl. Acad. Sci. USA 100, 13477–13482 (2003).

    Article  CAS  Google Scholar 

  6. Norbury, C.C. & Sigal, L.J. Cross priming or direct priming: is that really the question? Curr. Opin. Immunol. 15, 82–88 (2003).

    Article  CAS  Google Scholar 

  7. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  8. Garrett, W.S. et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102, 325–334 (2000).

    Article  CAS  Google Scholar 

  9. West, M.A., Prescott, A.R., Eskelinen, E.L., Ridley, A.J. & Watts, C. Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Curr. Biol. 10, 839–848 (2000).

    Article  CAS  Google Scholar 

  10. West, M.A. et al. Enhanced dendritic cell antigen capture via Toll-like receptor-induced actin remodeling. Science 305, 1153–1157 (2004).

    Article  CAS  Google Scholar 

  11. Klinman, D.M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249–258 (2004).

    Article  CAS  Google Scholar 

  12. Williamson, W.A. & Greenwood, B.M. Impairment of the immune response to vaccination after acute malaria. Lancet 1, 1328–1329 (1978).

    Article  CAS  Google Scholar 

  13. Whittle, H.C. et al. T-cell control of Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature 312, 449–450 (1984).

    Article  CAS  Google Scholar 

  14. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885–891 (2002).

    Article  CAS  Google Scholar 

  15. Urban, B.C. & Roberts, D.J. Inhibition of T cell function during malaria: implications for immunology and vaccinology. J. Exp. Med. 197, 137–141 (2003).

    Article  CAS  Google Scholar 

  16. Villadangos, J.A. & Heath, W.R. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: limitations of the Langerhans cells paradigm. Semin. Immunol. 17, 262–272 (2005).

    Article  CAS  Google Scholar 

  17. Wilson, N.S. et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102, 2187–2194 (2003).

    Article  CAS  Google Scholar 

  18. De Smedt, T. et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413–1424 (1996).

    Article  CAS  Google Scholar 

  19. Kamath, A.T. et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol. 165, 6762–6770 (2000).

    Article  CAS  Google Scholar 

  20. Edwards, A.D. et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33, 827–833 (2003).

    Article  CAS  Google Scholar 

  21. Wilson, N.S., El-Sukkari, D. & Villadangos, J.A. Dendritic cells constitutively present self antigens in their immature state in vivo, and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 103, 2187–2195 (2004).

    Article  CAS  Google Scholar 

  22. Villadangos, J.A., Schnorrer, P. & Wilson, N.S. Control of MHC class II antigen presentation in dendritic cells: a balance between creative and destructive forces. Immunol. Rev. 207, 191–205 (2005).

    Article  CAS  Google Scholar 

  23. Brocker, T., Riedinger, M. & Karjalainen, K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J. Exp. Med. 185, 541–550 (1997).

    Article  CAS  Google Scholar 

  24. Smith, C.M. et al. Cutting Edge: Conventional CD8α+ dendritic cells are preferentially involved in CTL priming after footpad Infection with herpes simplex virus-1. J. Immunol. 170, 4437–4440 (2003).

    Article  CAS  Google Scholar 

  25. Allan, R.S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    Article  CAS  Google Scholar 

  26. Belz, G.T. et al. Cutting edge: conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. 172, 1996–2000 (2004).

    Article  CAS  Google Scholar 

  27. van Lint, A. et al. Herpes simplex virus-specific CD8+ T cells can clear established lytic infections from skin and nerves and can partially limit the early spread of virus after cutaneous inoculation. J. Immunol. 172, 392–397 (2004).

    Article  CAS  Google Scholar 

  28. Pichyangkul, S. et al. Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. J. Immunol. 172, 4926–4933 (2004).

    Article  CAS  Google Scholar 

  29. Coban, C. et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201, 19–25 (2005).

    Article  CAS  Google Scholar 

  30. Gil-Torregrosa, B.C. et al. Control of cross-presentation during dendritic cell maturation. Eur. J. Immunol. 34, 398–407 (2004).

    Article  CAS  Google Scholar 

  31. Sporri, R. & Reis c Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6, 163–170 (2005).

    Article  Google Scholar 

  32. Naik, S.H. et al. Cutting edge: generation of splenic CD8+ and CD8 dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J. Immunol. 174, 6592–6597 (2005).

    Article  CAS  Google Scholar 

  33. Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    Article  CAS  Google Scholar 

  34. Urban, B.C. et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73–77 (1999).

    Article  CAS  Google Scholar 

  35. Urban, B.C., Willcox, N. & Roberts, D.J. A role for CD36 in the regulation of dendritic cell function. Proc. Natl. Acad. Sci. USA 98, 8750–8755 (2001).

    Article  CAS  Google Scholar 

  36. Ocana-Morgner, C., Mota, M.M. & Rodriguez, A. Malaria blood stage suppression of liver stage immunity by dendritic cells. J. Exp. Med. 197, 143–151 (2003).

    Article  CAS  Google Scholar 

  37. Seixas, E., Cross, C., Quin, S. & Langhorne, J. Direct activation of dendritic cells by the malaria parasite, Plasmodium chabaudi chabaudi. Eur. J. Immunol. 31, 2970–2978 (2001).

    Article  CAS  Google Scholar 

  38. Luyendyk, J., Olivas, O.R., Ginger, L.A. & Avery, A.C. Antigen-presenting cell function during Plasmodium yoelii infection. Infect. Immun. 70, 2941–2949 (2002).

    Article  CAS  Google Scholar 

  39. Leisewitz, A.L. et al. Response of the splenic dendritic cell population to malaria infection. Infect. Immun. 72, 4233–4239 (2004).

    Article  CAS  Google Scholar 

  40. Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782–787 (1997).

    Article  CAS  Google Scholar 

  41. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  CAS  Google Scholar 

  42. Ehst, B.D., Ingulli, E. & Jenkins, M.K. Development of a novel transgenic mouse for the study of interactions between CD4 and CD8 T cells during graft rejection. Am. J. Transplant. 3, 1355–1362 (2003).

    Article  CAS  Google Scholar 

  43. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  44. Morgan, D.J. et al. CD8+ T cell-mediated spontaneous diabetes in neonatal mice. J. Immunol. 157, 978–983 (1996).

    CAS  PubMed  Google Scholar 

  45. Mueller, S.N., Heath, W., McLain, J.D., Carbone, F.R. & Jones, C.M. Characterization of two TCR transgenic mouse lines specific for herpes simplex virus. Immunol. Cell Biol. 80, 156–163 (2002).

    Article  CAS  Google Scholar 

  46. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  Google Scholar 

  47. Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978–2986 (2000).

    Article  CAS  Google Scholar 

  48. O'Keeffe, M. et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J. Exp. Med. 196, 1307–1319 (2002).

    Article  CAS  Google Scholar 

  49. Li, M. et al. Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J. Immunol. 166, 6099–6103 (2001).

    Article  CAS  Google Scholar 

  50. Zhao, X. et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 197, 153–162 (2003).

    Article  CAS  Google Scholar 

  51. Franke-Fayard, B. et al. A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol. Biochem. Parasitol. 137, 23–33 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Buckingham, K. Gray, D. John, C. Jordan, F. Kupresanin, J. Langley, J.-L. Tan and all members of the Flow Cytometry and the Animal Services facilities at the Walter and Eliza Hall Institute for technical assistance. Supported by the National Health and Medical Research Council of Australia (G.T.B., F.R.C., K.S., B.S.C., W.R.H. and J.A.V.), the Anti-Cancer Council of Australia (J.A.V.), the Deutsche Forschungsgemeinschaft BE 2089/1-1 (G.M.N.B.), the Wellcome Trust (G.T.B.), Howard Hughes Medical Institute (G.T.B., B.S.C. and W.R.H.) and the Leukemia and Lymphoma Society (J.A.V.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brendan S Crabb, William R Heath or Jose A Villadangos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Maturation of lymphoid organ resident DC in TLR ligand-injected mice. (PDF 53 kb)

Supplementary Fig. 2

Down-regulation of MHC II presentation of cell-associated OVA in TLR ligand-treated mice. (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, N., Behrens, G., Lundie, R. et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat Immunol 7, 165–172 (2006). https://doi.org/10.1038/ni1300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing