Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127

An Erratum to this article was published on 01 December 2006

This article has been updated

Abstract

Natural killer (NK) cell development is thought to occur in the bone marrow. Here we identify the transcription factor GATA-3 and CD127 (IL-7Rα) as molecular markers of a pathway of mouse NK cell development that originates in the thymus. Thymus-derived CD127+ NK cells repopulated peripheral lymphoid organs, and their homeostasis was strictly dependent on GATA-3 and interleukin 7. The CD127+ NK cells had a distinct phenotype (CD11bloCD16CD69hiLy49lo) and unusual functional attributes, including reduced cytotoxicity but considerable cytokine production. Those characteristics are reminiscent of human CD56hiCD16 NK cells, which we found expressed CD127 and had more GATA-3 expression than human CD56+CD16+ NK cells. We propose that bone marrow and thymic NK cell pathways generate distinct mouse NK cells with properties similar to those of the two human CD56 NK cell subsets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GATA-3 and CD127 expression by NK cells from various lymphoid tissues.
Figure 2: Phenotype of thymic NK cells.
Figure 3: Function of IL-7 in the homeostasis of thymic NK cells.
Figure 4: Identification of 'thymic' NK cells in various lymphoid organs.
Figure 5: Thymic NK cells are exported to the periphery.
Figure 6: GATA-3 expression is required for the development of CD127+ thymic NK cells.
Figure 7: Functional properties of CD127-expressing NK cell subsets.
Figure 8: Expression of CD127 in human thymic NK cells and peripheral blood NK cell subsets.

Similar content being viewed by others

Change history

  • 03 November 2006

    In the version of this article initially published, the symbols in the key of Figure 7a are incorrect. The filled ovals are Splenic; the filled diamonds are Thymic. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Herberman, R.B., Nunn, M.E., Holden, H.T. & Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 16, 230–239 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Di Santo, J.P. Natural killer cell developmental pathways: a question of balance. Annu. Rev. Immunol. 24, 257–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Vosshenrich, C.A., Samson Villeger, S.I. & Di Santo, J.P. Distinguishing features of developing natural killer cells. Curr. Opin. Immunol. 17, 151–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Rosmaraki, E.E. et al. Identification of committed NK cell progenitors in adult murine bone marrow. Eur. J. Immunol. 31, 1900–1909 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Raulet, D.H., Vance, R.E. & McMahon, C.W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, S. et al. In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol. 3, 523–528 (2002).

    Article  PubMed  Google Scholar 

  7. Cooper, M.A. et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100, 3633–3638 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy, M.K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mrozek, E., Anderson, P. & Caligiuri, M.A. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87, 2632–2640 (1996).

    CAS  PubMed  Google Scholar 

  10. Ranson, T. et al. IL-15 is an essential mediator of peripheral NK cell homeostasis. Blood (2003).

  11. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. He, Y.W. & Malek, T.R. Interleukin-7 receptor α is essential for the development of γδ+ T cells, but not natural killer cells. J. Exp. Med. 184, 289–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Moore, T.A., von Freeden-Jeffry, U., Murray, R. & Zlotnik, A. Inhibition of γδ T cell development and early thymocyte maturation in IL-7−/− mice. J. Immunol. 157, 2366–2373 (1996).

    CAS  PubMed  Google Scholar 

  14. Vosshenrich, C.A. et al. Roles for common cytokine receptor γ-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J. Immunol. 174, 1213–1221 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Rothenberg, E.V. & Taghon, T. Molecular genetics of T cell development. Annu. Rev. Immunol. 23, 601–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Singh, H., Medina, K.L. & Pongubala, J.M. Contingent gene regulatory networks and B cell fate specification. Proc. Natl. Acad. Sci. USA 102, 4949–4953 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Samson, S.I. et al. GATA3 promotes maturation, IFN-γ production, and liver-specific homing of NK cells. Immunity 19, 701–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Taki, S., Nakajima, S., Ichikawa, E., Saito, T. & Hida, S. IFN regulatory factor-2 deficiency revealed a novel checkpoint critical for the generation of peripheral NK cells. J. Immunol. 174, 6005–6012 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Garni-Wagner, B.A. et al. Natural killer cells in the thymus. Studies in mice with severe combined immune deficiency. J. Immunol. 144, 796–803 (1990).

    CAS  PubMed  Google Scholar 

  21. Takeda, K. et al. TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105, 2082–2089 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Haller, O. & Wigzell, H. Suppression of natural killer cell activity with radioactive strontium: effector cells are marrow dependent. J. Immunol. 118, 1503–1506 (1977).

    CAS  PubMed  Google Scholar 

  23. Puzanov, I.J., Bennett, M. & Kumar, V. IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J. Immunol. 157, 4282–4285 (1996).

    CAS  PubMed  Google Scholar 

  24. Sanchez, M.J., Muench, M.O., Roncarolo, M.G., Lanier, L.L. & Phillips, J.H. Identification of a common T/natural killer cell progenitor in human fetal thymus. J. Exp. Med. 180, 569–576 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Spits, H. et al. Early stages in the development of human T, natural killer and thymic dendritic cells. Immunol. Rev. 165, 75–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Michie, A.M. et al. Clonal characterization of a bipotent T cell and NK cell progenitor in the mouse fetal thymus. J. Immunol. 164, 1730–1733 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Cooper, M.A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97, 3146–3151 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Hendriks, R.W. et al. Expression of the transcription factor GATA3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Dong, C. & Flavell, R.A. Control of T helper cell differentiation–in search of master genes. Sci. STKE 2000 PE1 (2000).

  30. Penix, L., Weaver, W.M., Pang, Y., Young, H.A. & Wilson, C.B. Two essential regulatory elements in the human interferon γ promoter confer activation specific expression in T cells. J. Exp. Med. 178, 1483–1496 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Leiden, J.M. Transcriptional regulation of T cell receptor genes. Annu. Rev. Immunol. 11, 539–570 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Ma, A., Koka, R. & Burkett, P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu. Rev. Immunol. 24, 657–679 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Degli-Esposti, M.A. & Smyth, M.J. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat. Rev. Immunol. 5, 112–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Chan, C.W. et al. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat. Med. 12, 207–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Taieb, J. et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nat. Med. 12, 214–219 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Ferlazzo, G. & Munz, C. NK cell compartments and their activation by dendritic cells. J. Immunol. 172, 1333–1339 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Freud, A.G. et al. A human CD34+ subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 22, 295–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Hansson, M., Kiessling, R., Andersson, B., Karre, K. & Roder, J. NK cell-sensitive T-cell subpopulation in thymus: inverse correlation to host NK activity. Nature 278, 174–176 (1979).

    Article  CAS  PubMed  Google Scholar 

  40. Schott, E., Bonasio, R. & Ploegh, H.L. Elimination in vivo of developing T cells by natural killer cells. J. Exp. Med. 198, 1213–1224 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mowen, K.A. & Glimcher, L.H. Signaling pathways in Th2 development. Immunol. Rev. 202, 203–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Haddad, R. et al. Dynamics of thymus-colonizing cells during human development. Immunity 24, 217–230 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Canque, G. de Saint Basile, E. Six and M. Albert for thymocytes, peripheral blood mononuclear cells and antibodies for human studies, and R. Hendriks for Gata3+/nlslacZ mice. Supported by the Institut Pasteur, the Institut National de la Santé et Recherche Medicale, the Ligue Nationale Contre le Cancer and the Fondation de la Recherche Médicale, as well as the Pasteur Foundation and Institut National de la Santé et Recherche Medicale (M.G.O.).

Author information

Authors and Affiliations

Authors

Contributions

C.A.J.V., M.E.G.-O., S.I.S.-V., L.E., D.G.-G., L.R., S.E. and J.P.D. did the experiments; V.P., O.R.-L. and E.C. provided technical assistance; B.R., A.C. and S.E. contributed to the experimental design and analysis; and C.A.J.V. and J.P.D. wrote the manuscript.

Corresponding author

Correspondence to James P Di Santo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vosshenrich, C., García-Ojeda, M., Samson-Villéger, S. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7, 1217–1224 (2006). https://doi.org/10.1038/ni1395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing