Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities

Abstract

The present paradigm dictates that phagocytosis is accomplished mainly by 'professional' phagocytes (such as macrophages and monocytes), whereas B cells lack phagocytic capabilities. Here we demonstrate that B cells from teleost fish have potent in vitro and in vivo phagocytic activities. Particle uptake by B cells induced activation of 'downstream' degradative pathways, leading to 'phagolysosome' formation and intracellular killing of ingested microbes. Those results indicate a previously unknown function for B cells in the innate immunity of these primitive animals. A considerable proportion of Xenopus laevis B cells were also phagocytic. Our findings support the idea that B cells evolved from an ancestral phagocytic cell type and provide an evolutionary framework for understanding the close relationship between mammalian B lymphocytes and macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phagocytosis by IgM+ and IgM trout cells.
Figure 2: Gene expression profiles of phagocytic and nonphagocytic IgM+ and IgM cells.
Figure 3: TEM analysis of phagocytic IgM+ and IgM cells.
Figure 4: SEM analysis of phagocytic IgM+ and IgM cells.
Figure 5: Parameters influencing the phagocytic activity of B cells.
Figure 6: Influence of antibody and complement opsonization on the uptake of A. hydrophila by IgM+ and IgM cells.
Figure 7: Phagolysosome formation and intracellular killing by phagocytic B cells and granulocytes.
Figure 8: Phagocytosis by IgM+ and IgM X. laevis cells.

Similar content being viewed by others

References

  1. Desjardins, M., Houde, M. & Gagnon, E. Phagocytosis: the convoluted way from nutrition to adaptive immunity. Immunol. Rev. 207, 158–165 (2005).

    Article  CAS  Google Scholar 

  2. Aderem, A. & Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).

    Article  CAS  Google Scholar 

  3. Stuart, L.M. & Ezekowitz, R.A. Phagocytosis: elegant complexity. Immunity 22, 539–550 (2005).

    Article  CAS  Google Scholar 

  4. Rabinovitch, M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol. 5, 85–87 (1995).

    Article  CAS  Google Scholar 

  5. Vidard, L. et al. Analysis of MHC class II presentation of particulate antigens of B lymphocytes. J. Immunol. 156, 2809–2818 (1996).

    CAS  PubMed  Google Scholar 

  6. Ochando, J.C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat. Immunol. 7, 652–662 (2006).

    Article  CAS  Google Scholar 

  7. Boyd, A.W. & Schrader, J.W. Derivation of macrophage-like lines from the pre-B lymphoma ABLS 8.1 using 5-azacytidine. Nature 297, 691–693 (1982).

    Article  CAS  Google Scholar 

  8. Martin, M. et al. A novel cellular model (SPGM 1) of switching between the pre-B cell and myelomonocytic lineages. J. Immunol. 150, 4395–4406 (1993).

    CAS  PubMed  Google Scholar 

  9. Tanaka, T., Wu, G.E. & Paige, C.J. Characterization of the B cell-macrophage lineage transition in 70Z/3 cells. Eur. J. Immunol. 24, 1544–1548 (1994).

    Article  CAS  Google Scholar 

  10. Cumano, A., Paige, C.J., Iscove, N.N. & Brady, G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356, 612–615 (1992).

    Article  CAS  Google Scholar 

  11. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nat. Immunol. 2, 83–88 (2001).

    Article  CAS  Google Scholar 

  12. Iwama, G. & Nakanishi, T. in Fish Physiology Series 63–103 (Academic, San Diego, 1997).

    Google Scholar 

  13. Zapata, A. & Amemiya, C.T. Phylogeny of lower vertebrates and their immunological structures. Curr. Top. Microbiol. Immunol. 248, 67–107 (2000).

    CAS  PubMed  Google Scholar 

  14. Miller, N. et al. Functional and molecular characterization of teleost leukocytes. Immunol. Rev. 166, 187–197 (1998).

    Article  CAS  Google Scholar 

  15. Rombout, J.H., Huttenhuis, H.B., Picchietti, S. & Scapigliati, G. Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol. 19, 441–455 (2005).

    Article  CAS  Google Scholar 

  16. Hansen, J.D., Landis, E.D. & Phillips, R.B. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish. Proc. Natl. Acad. Sci. USA 102, 6919–6924 (2005).

    Article  CAS  Google Scholar 

  17. Danilova, N., Bussmann, J., Jekosch, K. & Steiner, L.A. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat. Immunol. 6, 295–302 (2005).

    Article  CAS  Google Scholar 

  18. Solem, S.T. & Stenvik, J. Antibody repertoire development in teleosts-a review with emphasis on salmonids and Gadus morhua L. Dev. Comp. Immunol. 30, 57–76 (2006).

    Article  CAS  Google Scholar 

  19. Flajnik, M.F. & Rumfelt, L.L. Early and natural antibodies in non-mammalian vertebrates. Curr. Top. Microbiol. Immunol. 252, 233–240 (2000).

    CAS  PubMed  Google Scholar 

  20. Jansson, E. et al. Monoclonal antibodies to lymphocytes of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 14, 239–257 (2003).

    Article  CAS  Google Scholar 

  21. Miyadai, T., Ootani, M., Tahara, D., Aoki, M. & Saitoh, K. Monoclonal antibodies recognising serum immunoglobulins and surface immunoglobulin-positive cells of puffer fish, torafugu (Takifugu rubripes). Fish Shellfish Immunol. 17, 211–222 (2004).

    Article  CAS  Google Scholar 

  22. Secombes, C.J. & Fletcher, T.C. The role of phagocytes in the protective mechanisms of fish. Ann. Rev. Fish Dis. 2, 53–71 (1992).

    Article  Google Scholar 

  23. Flajnik, M.F. & Du Pasquier, L. Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol. 25, 640–644 (2004).

    Article  CAS  Google Scholar 

  24. DeLuca, D., Wilson, M. & Warr, G.W. Lymphocyte heterogeneity in the trout, Salmo gairdneri, defined with monoclonal antibodies to IgM. Eur. J. Immunol. 13, 546–551 (1983).

    Article  CAS  Google Scholar 

  25. Andersson, E. & Matsunaga, T. Complete cDNA sequence of a rainbow trout IgM gene and evolution of vertebrate IgM constant domains. Immunogenetics 38, 243–250 (1993).

    Article  CAS  Google Scholar 

  26. Afonso, A., Ellis, A.E. & Silva, M.T. The leucocyte population of the unstimulated peritoneal cavity of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 5, 335–348 (1997).

    Article  Google Scholar 

  27. Honda, T. et al. Molecular cloning and expression analysis of a macrophage-colony stimulating factor receptor-like gene from rainbow trout, Oncorhynchus mykiss. Mol. Immunol. 42, 1–8 (2005).

    Article  CAS  Google Scholar 

  28. Chitu, V. & Stanley, E.R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 18, 39–48 (2006).

    Article  CAS  Google Scholar 

  29. Barreda, D.R., Hanington, P.C., Stafford, J.L. & Belosevic, M. A novel soluble form of the CSF-1 receptor inhibits proliferation of self-renewing macrophages of goldfish (Carassius auratus L.). Dev. Comp. Immunol. 29, 879–894 (2005).

    Article  CAS  Google Scholar 

  30. Wines, B.D., Trist, H.M., Monteiro, R.C., Van Kooten, C. & Hogarth, P.M. Fc receptor γ chain residues at the interface of the cytoplasmic and transmembrane domains affect association with FcαRI, surface expression, and function. J. Biol. Chem. 279, 26339–26345 (2004).

    Article  CAS  Google Scholar 

  31. Shen, L. et al. Identification and characterization of clonal NK-like cells from channel catfish (Ictalurus punctatus). Dev. Comp. Immunol. 28, 139–152 (2004).

    Article  CAS  Google Scholar 

  32. Boshra, H. et al. Cloning, expression, cellular distribution, and role in chemotaxis of a C5a receptor in rainbow trout: the first identification of a C5a receptor in a nonmammalian species. J. Immunol. 172, 4381–4390 (2004).

    Article  CAS  Google Scholar 

  33. Abrahao, T.B., Freymuller, E., Mortara, R.A., Lopes, J.D. & Mariano, M. Morphological characterization of mouse B-1 cells. Immunobiol. 208, 401–411 (2003).

    Article  Google Scholar 

  34. Polliack, A. et al. Identification of human B and T lymphocytes by scanning electron microscopy. J. Exp. Med. 138, 607–624 (1973).

    Article  CAS  Google Scholar 

  35. Worth, R.G. et al. The cytoplasmic domain of FcγRIIA (CD32) participates in phagolysosome formation. Blood 98, 3429–3434 (2001).

    Article  CAS  Google Scholar 

  36. Morisawa, Y. et al. Lysosomal glycogen storage disease with normal acid maltase with early fatal outcome. J. Neurol. Sci. 160, 175–179 (1998).

    Article  CAS  Google Scholar 

  37. Vosbeck, K., James, P.R. & Zimmermann, W. Antibiotic action on phagocytosed bacteria measured by a new method for determining viable bacteria. Antimicrob. Agents Chemother. 25, 735–741 (1984).

    Article  CAS  Google Scholar 

  38. Hsu, E. & Du Pasquier, L. Studies on Xenopus immunoglobulins using monoclonal antibodies. Mol. Immunol. 21, 257–270 (1984).

    Article  CAS  Google Scholar 

  39. Pier, G.B., Lyczak, J.B. & Wetzler, L.M. in Immunology, Infection and Immunity Ch. 3 (ASM, Washington, DC, 2004).

    Book  Google Scholar 

  40. Mori, M. et al. IL-4 promotes the migration of circulating B cells to the spleen and increases splenic B cell survival. J. Immunol. 164, 5704–5712 (2000).

    Article  CAS  Google Scholar 

  41. Fleire, S.J. et al. B cell ligand discrimination through a spreading and contraction response. Science 312, 738–741 (2006).

    Article  CAS  Google Scholar 

  42. Davidson, W.F., Pierce, J.H. & Holmes, K.L. Evidence for a developmental relationship between CD5+ B-lineage cells and macrophages. Ann. NY Acad. Sci. 651, 112–129 (1992).

    Article  CAS  Google Scholar 

  43. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  Google Scholar 

  44. Borrello, M.A. & Phipps, R.P. The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol. Today 17, 471–475 (1996).

    Article  CAS  Google Scholar 

  45. Graf, B.A. et al. Biphenotypic B/macrophage cells express COX-1 and up-regulate COX-2 expression and prostaglandin E2 production in response to pro-inflammatory signals. Eur. J. Immunol. 29, 3793–3803 (1999).

    Article  CAS  Google Scholar 

  46. Endo, Y. et al. Two lineages of mannose-binding lectin-associated serine protease (MASP) in vertebrates. J. Immunol. 161, 4924–4930 (1998).

    CAS  PubMed  Google Scholar 

  47. Katsura, Y. Redefinition of lymphoid progenitors. Nat. Rev. Immunol. 2, 127–132 (2002).

    Article  CAS  Google Scholar 

  48. Plytycz, B. & Seljelid, R. Dual origin of lymphocytes? Immunol. Today 20, 53–55 (1999).

    Article  CAS  Google Scholar 

  49. Kawamoto, H. A close developmental relationship between the lymphoid and myeloid lineages. Trends Immunol. 27, 169–175 (2006).

    Article  CAS  Google Scholar 

  50. Boshra, H. et al. Characterization of a C3a receptor in rainbow trout and Xenopus: the first identification of C3a receptors in nonmammalian species. J. Immunol. 175, 2427–2437 (2005).

    Article  CAS  Google Scholar 

  51. Miller, N.W. et al. Development and characterization of channel catfish long term B cell lines. J. Immunol. 152, 2180–2189 (1994).

    CAS  PubMed  Google Scholar 

  52. Li, J., Peters, R., LaPatra, S.E., Vazzana, M. & Sunyer, J.O. Anaphylatoxin-like molecules generated during complement activation induce a dramatic enhancement of particle uptake in rainbow trout phagocytes. Dev. Comp. Immunol. 28, 1005–1021 (2004).

    Article  CAS  Google Scholar 

  53. Miller, N.W., Bly, J.E., van Ginkel, F., Ellsaesser, C.F. & Clem, L.W. Phylogeny of lymphocyte heterogeneity: identification and separation of functionally distinct subpopulations of channel catfish lymphocytes with monoclonal antibodies. Dev. Comp. Immunol. 11, 739–747 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. Zhao (Biomedical Imaging Core, School of Medicine, University of Pennsylvania), R. Meade and N. Shah (Biomedical Imaging Core, School of Medicine, University of Pennsylvania) for technical assistance; and A. Bhandoola, L. Bello, P. Scott and A. Thomas-Tikhonenko for critical reading of the manuscript. Supported by the National Science Foundation (MCB-0417078 to J.O.S.) and the National Research Initiative of the US Department of Agriculture Cooperative State Research, Education and Extension Service (2004-01599 to J.O.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Oriol Sunyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Characterization of trout B cells. (PDF 180 kb)

Supplementary Fig. 2

Phagocytic IgM+ cells are non-adherent. (PDF 105 kb)

Supplementary Fig. 3

Catfish blood B cells are phagocytic. (PDF 2149 kb)

Supplementary Fig. 4

Amino acid sequence alignment. (PDF 148 kb)

Supplementary Fig. 5

Ultrastructural features of bead uptake by trout phagocytic IgM+ cells. (PDF 166 kb)

Supplementary Fig. 6

In vivo analysis of phagocytosis by peritoneal cavity trout IgM+ and IgM cells. (PDF 90 kb)

Supplementary Table 1

Primers used for RT-PCR. (PDF 45 kb)

Supplementary Methods (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Barreda, D., Zhang, YA. et al. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat Immunol 7, 1116–1124 (2006). https://doi.org/10.1038/ni1389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing