Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic basis of pre–T cell receptor–mediated autonomous signaling critical for thymocyte development

This article has been updated

Abstract

The pre–T cell receptor (TCR) is crucial for early T cell development and is proposed to function in a ligand-independent way. However, the molecular mechanism underlying the autonomous signals remains elusive. Here we show that the pre-TCR complex spontaneously formed oligomers. Specific charged residues in the extracellular domain of the pre-TCR α-chain mediated formation of the oligomers in vitro. Alteration of these residues eliminated the ability of the pre-TCR α-chain to support pre-TCR signaling in vivo. Dimerization but not raft localization of CD3ε was sufficient to simulate pre-TCR function and promote β-selection. These results suggest that the pre-TCR complex can deliver its signal autonomously through oligomerization of the pre-TCR α-chain mediated by charged residues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constitutive internalization and lysosome targeting of the pre-TCR.
Figure 2: Autonomous growth of BAF3 cell lines is induced by pTα–EPOR but not TCRα–EPOR.
Figure 3: Specific charged amino acids in the extracellular domain of pTα are critical for the function of pTα–EPOR.
Figure 4: The pTα-RA mutant fails to induce pre-TCR oligomerization or to restore Ptcra−/− thymocyte development.
Figure 5: Raft localization of CD3ε is not sufficient for the DP transition.
Figure 6: Dimerized CD3ε chimera is sufficient for bypass of β-selection in Rag2−/− mice.
Figure 7: The CD3ε dimer induces differentiation signals in DN cells but not DP cells or a mature T cell line.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

Change history

  • 09 December 2005

    In the version of this article initially published online, the fifth subheading in the Results section was incorrect. The error has been corrected for the HTML and print versions of the article.

Notes

  1. *Note: In the version of this article initially published online, the fifth subheading in the Results section was incorrect. It should read “Raft-targeted CD3ε fails to bypass β-selection.” The error has been corrected for the HTML and print versions of the article.

References

  1. Fehling, H.J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  Google Scholar 

  2. Irving, B.A., Alt, F.W. & Killeen, N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280, 905–908 (1998).

    Article  CAS  Google Scholar 

  3. Saint-Ruf, C. et al. Different initiation of pre-TCR and γδTCR signalling. Nature 406, 524–527 (2000).

    Article  CAS  Google Scholar 

  4. Aifantis, I. et al. A critical role for the cytoplasmic tail of pTα in T lymphocyte development. Nat. Immunol. 3, 483–488 (2002).

    Article  CAS  Google Scholar 

  5. Borowski, C., Li, X., Aifantis, I., Gounari, F. & von Boehmer, H. Pre-TCRα and TCRα are not interchangeable partners of TCRβ during T lymphocyte development. J. Exp. Med. 199, 607–615 (2004).

    Article  CAS  Google Scholar 

  6. Haks, M.C. et al. Low activation threshold as a mechanism for ligand-independent signaling in pre-T cells. J. Immunol. 170, 2853–2861 (2003).

    Article  CAS  Google Scholar 

  7. Huang, C.Y. & Kanagawa, O. Impact of early expression of TCRα chain on thymocyte development. Eur. J. Immunol. 34, 1532–1541 (2004).

    Article  CAS  Google Scholar 

  8. Levelt, C.N. et al. Regulation of thymocyte development through CD3: functional dissociation between p56lck and CD3σ in early thymic selection. Immunity 3, 215–222 (1995).

    Article  CAS  Google Scholar 

  9. Shinkai, Y. & Alt, F.W. CD3 ε-mediated signals rescue the development of CD4+CD8+ thymocytes in RAG-2−/− mice in the absence of TCRβ chain expression. Int. Immunol. 6, 995–1001 (1994).

    Article  CAS  Google Scholar 

  10. Shinkai, Y., Ma, A., Cheng, H.L. & Alt, F.W. CD3ε and CD3ζ cytoplasmic domains can independently generate signals for T cell development and function. Immunity 2, 401–411 (1995).

    Article  CAS  Google Scholar 

  11. Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3ε gene. EMBO J. 14, 4641–4653 (1995).

    Article  CAS  Google Scholar 

  12. DeJarnette, J.B. et al. Specific requirement for CD3ε in T cell development. Proc. Natl. Acad. Sci. USA 95, 14909–14914 (1998).

    Article  CAS  Google Scholar 

  13. Panigada, M. et al. Constitutive endocytosis and degradation of the pre-T cell receptor. J. Exp. Med. 195, 1585–1597 (2002).

    Article  CAS  Google Scholar 

  14. Yoshimura, A., Longmore, G. & Lodish, H.F. Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 348, 647–649 (1990).

    Article  CAS  Google Scholar 

  15. Saint-Ruf, C. et al. Analysis and expression of a cloned pre-T cell receptor gene. Science 266, 1208–1212 (1994).

    Article  CAS  Google Scholar 

  16. Wang, J. et al. Atomic structure of an αβ T cell receptor (TCR) heterodimer in complex with an anti-TCR Fab fragment derived from a mitogenic antibody. EMBO J. 17, 10–26 (1998).

    Article  Google Scholar 

  17. Boerth, N.J. et al. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J. Exp. Med. 192, 1047–1058 (2000).

    Article  CAS  Google Scholar 

  18. Yamasaki, S., Ishikawa, E., Kohno, M. & Saito, T. The quantity and duration of FcRγ signals determine mast cell degranulation and survival. Blood 103, 3093–3101 (2004).

    Article  CAS  Google Scholar 

  19. Shinkai, Y. et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    Article  CAS  Google Scholar 

  20. Anderson, S.J., Abraham, K.M., Nakayama, T., Singer, A. & Perlmutter, R.M. Inhibition of T-cell receptor β-chain gene rearrangement by overexpression of the non-receptor protein tyrosine kinase p56lck. EMBO J. 11, 4877–4886 (1992).

    Article  CAS  Google Scholar 

  21. Leahy, D.J., Axel, R. & Hendrickson, W.A. Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 A resolution. Cell 68, 1145–1162 (1992).

    Article  CAS  Google Scholar 

  22. Arcaro, A. et al. CD8β endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56lck complexes. J. Exp. Med. 194, 1485–1495 (2001).

    Article  CAS  Google Scholar 

  23. Carleton, M. et al. Signals transduced by CD3ε, but not by surface pre-TCR complexes, are able to induce maturation of an early thymic lymphoma in vitro. J. Immunol. 163, 2576–2585 (1999).

    CAS  PubMed  Google Scholar 

  24. Masuda, K. et al. Thymic anlage is colonized by progenitors restricted to T, NK, and dendritic cell lineages. J. Immunol. 174, 2525–2532 (2005).

    Article  CAS  Google Scholar 

  25. Michie, A.M. & Zuniga-Pflucker, J.C. Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Semin. Immunol. 14, 311–323 (2002).

    Article  CAS  Google Scholar 

  26. Hayes, S.M., Shores, E.W. & Love, P.E. An architectural perspective on signaling by the pre-, αβ and γδ T cell receptors. Immunol. Rev. 191, 28–37 (2003).

    Article  CAS  Google Scholar 

  27. Gibbons, D. et al. The biological activity of natural and mutant pTα alleles. J. Exp. Med. 194, 695–703 (2001).

    Article  CAS  Google Scholar 

  28. Levelt, C.N., Mombaerts, P., Iglesias, A., Tonegawa, S. & Eichmann, K. Restoration of early thymocyte differentiation in T-cell receptor β-chain-deficient mutant mice by transmembrane signaling through CD3ε. Proc. Natl. Acad. Sci. USA 90, 11401–11405 (1993).

    Article  CAS  Google Scholar 

  29. Gil, D., Schamel, W.W., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  Google Scholar 

  30. Howard, F.D. et al. The CD3ζ cytoplasmic domain mediates CD2-induced T cell activation. J. Exp. Med. 176, 139–145 (1992).

    Article  CAS  Google Scholar 

  31. Carrasco, Y.R. et al. An endoplasmic reticulum retention function for the cytoplasmic tail of the human pre-T cell receptor (TCR) α chain: potential role in the regulation of cell surface pre-TCR expression levels. J. Exp. Med. 193, 1045–1058 (2001).

    Article  CAS  Google Scholar 

  32. Carrasco, Y.R., Navarro, M.N. & Toribio, M.L. A role for the cytoplasmic tail of the pre-T cell receptor (TCR) α chain in promoting constitutive internalization and degradation of the pre-TCR. J. Biol. Chem. 278, 14507–14513 (2003).

    Article  CAS  Google Scholar 

  33. Fehling, H.J. et al. Restoration of thymopoiesis in pTα−/− mice by anti-CD3ε antibody treatment or with transgenes encoding activated Lck or tailless pTα. Immunity 6, 703–714 (1997).

    Article  CAS  Google Scholar 

  34. Trop, S., Steff, A.M., Denis, F., Wiest, D.L. & Hugo, P. The connecting peptide domain of pTα dictates weak association of the pre-T cell receptor with the TCRζ subunit. Eur. J. Immunol. 29, 2187–2196 (1999).

    Article  CAS  Google Scholar 

  35. Trop, S., Rhodes, M., Wiest, D.L., Hugo, P. & Zuniga-Pflucker, J.C. Competitive displacement of pTα by TCR-α during TCR assembly prevents surface coexpression of pre-TCR and αβ TCR. J. Immunol. 165, 5566–5572 (2000).

    Article  CAS  Google Scholar 

  36. Borowski, C. et al. On the brink of becoming a T cell. Curr. Opin. Immunol. 14, 200–206 (2002).

    Article  CAS  Google Scholar 

  37. Muljo, S.A. & Schlissel, M.S. Pre-B and pre-T-cell receptors: conservation of strategies in regulating early lymphocyte development. Immunol. Rev. 175, 80–93 (2000).

    Article  CAS  Google Scholar 

  38. Ohnishi, K. & Melchers, F. The nonimmunoglobulin portion of λ5 mediates cell-autonomous pre-B cell receptor signaling. Nat. Immunol. 4, 849–856 (2003).

    Article  CAS  Google Scholar 

  39. Gauthier, L., Rossi, B., Roux, F., Termine, E. & Schiff, C. Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc. Natl. Acad. Sci. USA 99, 13014–13019 (2002).

    Article  CAS  Google Scholar 

  40. Bradl, H., Wittmann, J., Milius, D., Vettermann, C. & Jack, H.M. Interaction of murine precursor B cell receptor with stroma cells is controlled by the unique tail of λ5 and stroma cell-associated heparan sulfate. J. Immunol. 171, 2338–2348 (2003).

    Article  CAS  Google Scholar 

  41. Yokosuka, T. et al. Predominant role of T cell receptor (TCR)-α chain in forming preimmune TCR repertoire revealed by clonal TCR reconstitution system. J. Exp. Med. 195, 991–1001 (2002).

    Article  CAS  Google Scholar 

  42. Poirier, G., Lo, D., Reilly, C.R. & Kaye, J. Discrimination between thymic epithelial cells and peripheral antigen-presenting cells in the induction of immature T cell differentiation. Immunity 1, 385–391 (1994).

    Article  CAS  Google Scholar 

  43. Chaffin, K.E. et al. Dissection of thymocyte signaling pathways by in vivo expression of pertussis toxin ADP-ribosyltransferase. EMBO J. 9, 3821–3829 (1990).

    Article  CAS  Google Scholar 

  44. Kitamura, T. New experimental approaches in retrovirus-mediated expression screening. Int. J. Hematol. 67, 351–359 (1998).

    Article  CAS  Google Scholar 

  45. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  46. Needleman, S.B. & Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  Google Scholar 

  47. Cornell, W.D. et al. A 2nd-generation force-field for the simulation of proteins, nucleic-acids, and small molecules. Abstr. Pap. Am. Chem. Soc. 204, 40-Comp (1992).

  48. Pearlman, D.A. et al. Amber, a package of computer programs for Applying molecular mechanics, normal mode analysis, molecular dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1–41 (1995).

    Article  CAS  Google Scholar 

  49. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A.H. & Yanagida, T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).

    Article  CAS  Google Scholar 

  50. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Yoshimura for cDNA; M. Unno and R. Shiina for technical help; H. Tomiyama for FRET analysis; N. Shinohara, S. Koyasu, A. Kosugi, H. Suzuki, K. Masuda, S. Sugawa, H. Fukuyama and O. Kanagawa for discussions; H. von Boehmer and S. Taki for critical reading of the manuscript; and H. Yamaguchi for secretarial assistance. Supported by a Grant-in-Aid for Priority Area Research (A) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Saito.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

pre-TCR has the tendency to form oligomers on the cell surface. (PDF 11 kb)

Supplementary Fig. 2

Generation of FRET in T cells co-expressing pTα–CFP and pTα–YFP. (PDF 45 kb)

Supplementary Fig. 3

Competitive BMT reconsitution assay of pTα-WT and pTα-R24A. (PDF 10 kb)

Supplementary Fig. 4

hCD8–CD3e chimera induced DN3 to DN4 cell transition in the absence of pTα. (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, S., Ishikawa, E., Sakuma, M. et al. Mechanistic basis of pre–T cell receptor–mediated autonomous signaling critical for thymocyte development. Nat Immunol 7, 67–75 (2006). https://doi.org/10.1038/ni1290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing