Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57

Abstract

The thiol-oxidoreductase ERp57 is an integral component of the peptide-loading complex of the major histocompatibility complex (MHC) class I pathway, but its function is unknown. To investigate its function in antigen presentation, we generated ERp57-deficient mice. Death in utero caused by ubiquitous ERp57 deletion was prevented by specific deletion in the B cell compartment. We demonstrate that ERp57 was central for recruitment of MHC class I molecules into the loading complex. In ERp57-deficient cells, we found short-lived interaction of MHC class I molecules with the loading complex. Thus, in the steady state, very few MHC class I molecules were present in the loading complex. Surface H-2Kb–peptide expression and stability were reduced, and presentation of a model antigen was decreased. Our results indicate that ERp57 does not influence the redox state of MHC class I molecules but is an essential structural component required for stable assembly of the peptide-loading complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of tissue-specific ERp57-deficient mice.
Figure 2: ERp57 increases the expression of MHC class I molecules.
Figure 3: ERp57 mediates the recruitment of MHC class I and calreticulin into the peptide-loading complex.
Figure 4: Redox state of MHC class I molecules in the absence of ERp57.
Figure 5: H-2Kb molecules mature faster in the absence of ERp57 but are suboptimally loaded.
Figure 6: Antigen-specific CD8+ T cell activation by ERp57-deficient APCs.

Similar content being viewed by others

References

  1. Hämmerling, G.J., Manoury, B., Watts, C., Adorini, L. & Lanzavecchia, A. Peptide binding and editing: generation of TCR ligands. Res. Immunol. 149, 863–865 (1998).

    Article  Google Scholar 

  2. Cresswell, P. & Lanzavecchia, A. Antigen processing and recognition. Curr. Opin. Immunol. 13, 11–12 (2001).

    Article  CAS  Google Scholar 

  3. Ortmann, B., Androlewicz, M.J. & Cresswell, P. MHC class I/β2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 368, 864–867 (1994).

    Article  CAS  Google Scholar 

  4. Suh, W.K. et al. Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 264, 1322–1326 (1994).

    Article  CAS  Google Scholar 

  5. Neefjes, J., Hämmerling, G.J. & Momburg, F. Folding and assembly of major hiytocompatibility complex class I heterodimers in the endoplasmic reticulum of intact cells precedes the binding of peptide. J. Exp. Med. 178, 1971–1980 (1993).

    Article  CAS  Google Scholar 

  6. Smith, J.D., Solheim, J.C., Carreno, B.M. & Hansen, T.H. Characterization of class I MHC folding intermediates and their disparate interactions with peptide and β2-microglobulin. Mol. Immunol. 32, 531–540 (1995).

    Article  CAS  Google Scholar 

  7. Tector, M., Zhang, Q. & Salter, R.D. β2-microglobulin and calnexin can independently promote folding and disulfide bond formation in class I histocompatibility proteins. Mol. Immunol. 34, 401–408 (1997).

    Article  CAS  Google Scholar 

  8. Ostergaard Pedersen, L. et al. Efficient assembly of recombinant major histocompatibility complex class I molecules with preformed disulfide bonds. Eur. J. Immunol. 31, 2986–2996 (2001).

    Article  CAS  Google Scholar 

  9. Paulsson, K. & Wang, P. Chaperones and folding of MHC class I molecules in the endoplasmic reticulum. Biochim. Biophys. Acta 1641, 1–12 (2003).

    Article  CAS  Google Scholar 

  10. Antoniou, A.N., Powis, S.J. & Elliott, T. Assembly and export of MHC class I peptide ligands. Curr. Opin. Immunol. 15, 75–81 (2003).

    Article  CAS  Google Scholar 

  11. Pamer, E. & Cresswell, P. Mechanisms of MHC class I-restricted antigen processing. Annu. Rev. Immunol. 16, 323–358 (1998).

    Article  CAS  Google Scholar 

  12. Degen, E. & Williams, D.B. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J. Cell Biol. 112, 1099–1115 (1991).

    Article  CAS  Google Scholar 

  13. Lindquist, J.A., Jensen, O.N., Mann, M. & Hämmerling, G.J. ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly. EMBO J. 17, 2186–2195 (1998).

    Article  CAS  Google Scholar 

  14. Morrice, N.A. & Powis, S.J. A role for the thiol-dependent reductase ERp57 in the assembly of MHC class I molecules. Curr. Biol. 8, 713–716 (1998).

    Article  CAS  Google Scholar 

  15. Farmery, M.R., Allen, S., Allen, A.J. & Bulleid, N.J. The role of ERp57 in disulfide bond formation during the assembly of major histocompatibility complex class I in a synchronized semipermeabilized cell translation system. J. Biol. Chem. 275, 14933–14938 (2000).

    Article  CAS  Google Scholar 

  16. Molinari, M. & Helenius, A. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 402, 90–93 (1999).

    Article  CAS  Google Scholar 

  17. High, S., Lecompte, F.J.L., Russell, S.J., Abell, B.M. & Oliver, J.D. Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS Lett. 476, 38–41 (2000).

    Article  CAS  Google Scholar 

  18. Ellgaard, L. & Helenius, A. ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol. 13, 431–437 (2001).

    Article  CAS  Google Scholar 

  19. Dick, T.B. Assembly of MHC class I peptide complexes from the perspective of disulfide bond formation. Cell. Mol. Life Sci. 61, 547–556 (2004).

    Article  CAS  Google Scholar 

  20. Wang, H., Capps, G.G., Robinson, B.E. & Zuniga, M.C. Ab initio association with β2-microglobulin during biosynthesis of the H-2Ld class I major histocompatibility complex heavy chain promotes proper disulfide bond formation and stable peptide binding. J. Biol. Chem. 269, 22276–22281 (1994).

    CAS  PubMed  Google Scholar 

  21. Sadasivan, B., Lehner, P.J., Ortmann, B., Spies, T. & Cresswell, P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5, 103–114 (1996).

    Article  CAS  Google Scholar 

  22. Cresswell, P., Bangia, N., Dick, T. & Diedrich, G. The nature of the MHC class I peptide loading complex. Immunol. Rev. 172, 21–28 (1999).

    Article  CAS  Google Scholar 

  23. Momburg, F. & Tan, P. Tapasin - the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol. Immunol. 39, 217–233 (2002).

    Article  CAS  Google Scholar 

  24. Hughes, E.A. & Cresswell, P. The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr. Biol. 8, 709–712 (1998).

    Article  CAS  Google Scholar 

  25. Van Kaer, L., Ashton Rickardt, P.G., Ploegh, H.L. & Tonegawa, S. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD48+ T cells. Cell 71, 1205–1214 (1992).

    Article  CAS  Google Scholar 

  26. Neefjes, J.J., Momburg, F. & Hämmerling, G.J. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261, 769–771 (1993).

    Article  CAS  Google Scholar 

  27. Androlewicz, M.J., Anderson, K.S. & Cresswell, P. Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc. Natl. Acad. Sci. USA 90, 9130–9134 (1993).

    Article  CAS  Google Scholar 

  28. Grandea, A.G., III & Van Kaer, L. Tapasin: an ER chaperone that controls MHC class I assembly with peptide. Trends Immunol. 22, 194–199 (2001).

    Article  CAS  Google Scholar 

  29. Brocke, P., Garbi, N., Momburg, F. & Hämmerling, G.J. HLA-DM, HLA-DO and tapasin: functional similarities and differences. Curr. Opin. Immunol. 14, 22–29 (2002).

    Article  CAS  Google Scholar 

  30. Ortmann, B. et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277, 1306–1309 (1997).

    Article  CAS  Google Scholar 

  31. Diedrich, G., Bangia, N., Pan, M. & Cresswell, P. A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. J. Immunol. 166, 1703–1709 (2001).

    Article  CAS  Google Scholar 

  32. Dick, T.P., Bangia, N., Peaper, D.R. & Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16, 87–98 (2002).

    Article  CAS  Google Scholar 

  33. Lehner, P.J., Surman, M.J. & Cresswell, P. Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line 220. Immunity 8, 221–231 (1998).

    Article  CAS  Google Scholar 

  34. Garbi, N., Tiwari, N., Momburg, F. & Hämmerling, G.J. A major role for tapasin as a stabilizer of the TAP peptide transporter and consequences for MHC class I expression. Eur. J. Immunol. 33, 264–273 (2003).

    Article  CAS  Google Scholar 

  35. Grandea, A.G., III, Lehner, P.J., Cresswell, P. & Spies, T. Regulation of MHC class I heterodimer stability and interaction with TAP by tapasin. Immunogenetics 46, 477–483 (1997).

    Article  CAS  Google Scholar 

  36. Garbi, N. et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat. Immunol. 1, 234–238 (2000).

    Article  CAS  Google Scholar 

  37. Williams, A.P., Peh, C.A., Purcell, A.W., McCluskey, J. & Elliott, T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16, 509–520 (2002).

    Article  CAS  Google Scholar 

  38. Howarth, M., Williams, A.P., Tolstrup, A.B. & Elliott, T. Tapasin enhances MHC class I peptide presentation according to peptide half-life. Proc. Natl. Acad. Sci. USA 101, 11737–11742 (2004).

    Article  CAS  Google Scholar 

  39. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).

    Article  CAS  Google Scholar 

  40. Mori, K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451–454 (2000).

    Article  CAS  Google Scholar 

  41. Lemke, H., Hämmerling, G.J. & Hämmerling, U. Fine specificity analysis with monoclonal antibodies of antigens controlled by the major histocompatibility complex and by the Qa/TL region in mice. Immunol. Rev. 47, 175–206 (1979).

    Article  CAS  Google Scholar 

  42. Jones, B. & Janeway, C.A., Jr. Cooperative interaction of B lymphocytes with antigen-specific helper T lymphocytes is MHC restricted. Nature 292, 547–549 (1981).

    Article  CAS  Google Scholar 

  43. Neefjes, J.J., Smit, L., Gehrmann, M. & Ploegh, H.L. The fate of the three subunits of major histocompatibility complex class I molecules. Eur. J. Immunol. 22, 1609–1614 (1992).

    Article  CAS  Google Scholar 

  44. Tan, P. et al. Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. J. Immunol. 168, 1950–1960 (2002).

    Article  CAS  Google Scholar 

  45. Gao, B. et al. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 16, 99–109 (2002).

    Article  CAS  Google Scholar 

  46. Molinari, M. et al. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell 13, 125–135 (2004).

    Article  CAS  Google Scholar 

  47. Schonrich, G. et al. Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 65, 293–304 (1991).

    Article  CAS  Google Scholar 

  48. Karttunen, J., Sanderson, S. & Shastri, N. Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc. Natl. Acad. Sci. USA 89, 6020–6024 (1992).

    Article  CAS  Google Scholar 

  49. Grandea, A.G., III et al. Impaired assembly yet normal trafficking of MHC class I molecules in tapasin mutant mice. Immunity 13, 213–222 (2000).

    Article  CAS  Google Scholar 

  50. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA 94, 3801–3804 (1997).

    Article  CAS  Google Scholar 

  51. Eufemi, M. et al. ERp57 is present in STAT3-DNA complexes. Biochem. Biophys. Res. Commun. 323, 1306–1312 (2004).

    Article  CAS  Google Scholar 

  52. Lindquist, J.A., Hammerling, G.J. & Trowsdale, J. ER60/ERp57 forms disulfide-bonded intermediates with MHC class I heavy chain. FASEB J. 15, 1448–1450 (2001).

    Article  CAS  Google Scholar 

  53. Park, B., Lee, S., Kim, E. & Ahn, K. A single polymorphic residue within the peptide-binding cleft of MHC class I molecules determines spectrum of tapasin dependence. J. Immunol. 170, 961–968 (2003).

    Article  CAS  Google Scholar 

  54. Peh, C.A. et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 8, 531–542 (1998).

    Article  CAS  Google Scholar 

  55. Bangia, N., Lehner, P.J., Hughes, E.A., Surman, M. & Cresswell, P. The N-terminal region of tapasin is required to stabilize the MHC class I loading complex. Eur. J. Immunol. 29, 1858–1870 (1999).

    Article  CAS  Google Scholar 

  56. Antoniou, A.N. et al. The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules. EMBO J. 21, 2655–2663 (2002).

    Article  CAS  Google Scholar 

  57. Constien, R. et al. Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30, 36–44 (2001).

    Article  CAS  Google Scholar 

  58. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  Google Scholar 

  59. Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  Google Scholar 

  60. Myers, N.B. et al. Kb, Kd, and Ld molecules share common tapasin dependencies as determined using a novel epitope tag. J. Immunol. 165, 5656–5663 (2000).

    Article  CAS  Google Scholar 

  61. Brocke, P., Armandola, E., Garbi, N. & Hammerling, G.J. Downmodulation of antigen presentation by H2-O in B cell lines and primary B lymphocytes. Eur. J. Immunol. 33, 411–421 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Küblbek, S. Schmidt, M. Wühl and N. Bulbuc for technical assistance; T. Oelert for critical reading of the manuscript; M. Molinari (Institute for Research in Biomedicine, Bellinzona, Switzerland) and T. Dick for discussions; and T. Hansen and N. Myers (Washington University School of Medicine, St. Louis, Missouri) for anti-tapasin rabbit serum. Supported by European Union projects MICROBAN (MRTN-CT-504227 to G.J.H.) and NoE-MUGENE (LSHG-CT-2005-005203 to G.J.H.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter J Hämmerling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

ERp57 increases stability of H-2Kb–peptide complexes. (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbi, N., Tanaka, S., Momburg, F. et al. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat Immunol 7, 93–102 (2006). https://doi.org/10.1038/ni1288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing