Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases

Abstract

The complement system is pivotal in host defense but also contributes to tissue injury in several diseases. The assembly of C3 convertases (C4b2a and C3bBb) is a prerequisite for complement activation. The convertases catalyze C3b deposition on activator surfaces. Here we describe the identification of staphylococcal complement inhibitor, an excreted 9.8-kilodalton protein that blocks human complement by specific interaction with C4b2a and C3bBb. Staphylococcal complement inhibitor bound and stabilized C3 convertases, interfering with additional C3b deposition through the classical, lectin and alternative complement pathways. This led to a substantial decrease in phagocytosis and killing of Staphylococcus aureus by human neutrophils. As a highly active and small soluble protein that acts exclusively on surfaces, staphylococcal complement inhibitor may represent a promising anti-inflammatory molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SCIN inhibits phagocytosis and killing of S. aureus by interfering with human complement.
Figure 2: SCIN inhibits all three complement pathways.
Figure 3: SCIN is a human-specific complement inhibitor.
Figure 4: SCIN binds to particles in a serum- and temperature-dependent way.
Figure 5: SCIN interferes with formation of C3 convertases.
Figure 6: SCIN prevents the dissociation of C3 convertases.
Figure 7: SCIN binds and inactivates C3bBb.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Carroll, M.C. The complement system in regulation of adaptive immunity. Nat. Immunol. 5, 981–986 (2004).

    Article  CAS  Google Scholar 

  2. Song, W.C., Sarrias, M.R. & Lambris, J.D. Complement and innate immunity. Immunopharmacology 49, 187–198 (2000).

    Article  CAS  Google Scholar 

  3. Fujita, T. Evolution of the lectin-complement pathway and its role in innate immunity. Nat. Rev. Immunol. 2, 346–353 (2002).

    Article  CAS  Google Scholar 

  4. Gasque, P. Complement: a unique innate immune sensor for danger signals. Mol. Immunol. 41, 1089–1098 (2004).

    Article  CAS  Google Scholar 

  5. Rawal, N. & Pangburn, M.K. Formation of high affinity C5 convertase of the classical pathway of complement. J. Biol. Chem. 278, 38476–38483 (2003).

    Article  CAS  Google Scholar 

  6. Xu, Y., Narayana, S.V. & Volanakis, J.E. Structural biology of the alternative pathway convertase. Immunol. Rev. 180, 123–135 (2001).

    Article  CAS  Google Scholar 

  7. Holmskov, U., Thiel, S. & Jensenius, J.C. Collectins and ficolins: Humoral Lectins of the Innate Immune Defense. Annu. Rev. Immunol. 21, 547–578 (2003).

    Article  CAS  Google Scholar 

  8. Moller-Kristensen, M., Thiel, S., Hansen, A.G. & Jensenius, J.C. On the site of C4 deposition upon complement activation via the mannan-binding lectin pathway or the classical pathway. Scand. J. Immunol. 57, 556–561 (2003).

    Article  CAS  Google Scholar 

  9. Chen, C.B. & Wallis, R. Two mechanisms for mannose-binding protein modulation of the activity of its associated serine proteases. J. Biol. Chem. 279, 26058–26065 (2004).

    Article  CAS  Google Scholar 

  10. De Bruijn, M.H. & Fey, G.H. Human complement component C3: cDNA coding sequence and derived primary structure. Proc. Natl. Acad. Sci. USA 82, 708–712 (1985).

    Article  CAS  Google Scholar 

  11. Nakao, M., Matsumoto, M., Nakazawa, M., Fujiki, K. & Yano, T. Diversity of complement factor B/C2 in the common carp (Cyprinus carpio): three isotypes of B/C2-A expressed in different tissues. Dev. Comp. Immunol. 26, 533–541 (2002).

    Article  CAS  Google Scholar 

  12. Ponnuraj, K. et al. Structural analysis of engineered Bb fragment of complement factor B: insights into the activation mechanism of the alternative pathway C3-convertase. Mol. Cell 14, 17–28 (2004).

    Article  CAS  Google Scholar 

  13. Foster, T.J. The Staphylococcus aureus “superbug”. J. Clin. Invest. 114, 1693–1696 (2004).

    Article  CAS  Google Scholar 

  14. De Haas, C.J. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004).

    Article  CAS  Google Scholar 

  15. Rooijakkers, S.H.M., van Wamel, W.J.B., Ruyken, M., van Kessel, K.P.M. & van Strijp, J.A.G. Anti-opsonic properties of staphylokinase. Microbes Infect. 7, 476–484 (2005).

    Article  CAS  Google Scholar 

  16. Jin, T. et al. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol. 172, 1169–1176 (2004).

    Article  CAS  Google Scholar 

  17. Rahimpour, R. et al. Bacterial superantigens induce down-modulation of CC chemokine responsiveness in human monocytes via an alternative chemokine ligand-independent mechanism. J. Immunol. 162, 2299–2307 (1999).

    CAS  PubMed  Google Scholar 

  18. Dohlsten, M. et al. Immunopharmacology of the superantigen staphylococcal enterotoxin A in T-cell receptor Vβ3 transgenic mice. Immunology 79, 520–527 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gladysheva, I.P., Turner, R.B., Sazonova, I.Y., Liu, L. & Reed, G.L. Coevolutionary patterns in plasminogen activation. Proc. Natl. Acad. Sci. USA 100, 9168–9172 (2003).

    Article  CAS  Google Scholar 

  20. Leijh, P.C., van den Barselaar, M.T., Daha, M.R. & van Furth, R. Participation of immunoglobulins and complement components in the intracellular killing of Staphylococcus aureus and Escherichia coli by human granulocytes. Infect. Immun. 33, 714–724 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Neth, O., Jack, D.L., Johnson, M., Klein, N.J. & Turner, M.W. Enhancement of complement activation and opsonophagocytosis by complexes of mannose-binding lectin with mannose-binding lectin-associated serine protease after binding to Staphylococcus aureus. J. Immunol. 169, 4430–4436 (2002).

    Article  CAS  Google Scholar 

  22. Cunnion, K.M., Lee, J.C. & Frank, M.M. Capsule production and growth phase influence binding of complement to Staphylococcus aureus. Infect. Immun. 69, 6796–6803 (2001).

    Article  CAS  Google Scholar 

  23. Roos, A. et al. Functional characterization of the lectin pathway of complement in human serum. Mol. Immunol. 39, 655–668 (2003).

    Article  CAS  Google Scholar 

  24. Seelen, M.A. et al. Functional analysis of the classical, alternative, and MBL pathways of the complement system: standardization and validation of a simple ELISA. J. Immunol. Methods 296, 187–198 (2005).

    Article  CAS  Google Scholar 

  25. Servais, G., Walmagh, J. & Duchateau, J. Simple quantitative haemolytic microassay for determination of complement alternative pathway activation (AP50). J. Immunol. Methods 140, 93–100 (1991).

    Article  CAS  Google Scholar 

  26. De Haas, C.J., van Leeuwen, H.J., Verhoef, J., Van Kessel, K.P.M. & Van Strijp, J.A.G. Analysis of lipopolysaccharide (LPS)-binding characteristics of serum components using gel filtration of FITC-labeled LPS. J. Immunol. Methods 242, 79–89 (2000).

    Article  CAS  Google Scholar 

  27. De Haas, C.J., Haas, P.J., Van Kessel, K.P.M. & Van Strijp, J.A.G. Affinities of different proteins and peptides for lipopolysaccharide as determined by biosensor technology. Biochem. Biophys. Res. Commun. 252, 492–496 (1998).

    Article  CAS  Google Scholar 

  28. Fearon, D.T. & Austen, K.F. Activation of the alternative complement pathway due to resistance of zymosan-bound. Proc. Natl. Acad. Sci. USA 74, 1683–1687 (1977).

    Article  CAS  Google Scholar 

  29. Sahu, A. & Lambris, J.D. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol. Rev. 180, 35–48 (2001).

    Article  CAS  Google Scholar 

  30. Fishelson, Z. & Muller-Eberhard, H.J. C3 convertase of human complement: enhanced formation and stability of the enzyme generated with nickel instead of magnesium. J. Immunol. 129, 2603–2607 (1982).

    CAS  PubMed  Google Scholar 

  31. Laich, A. & Sim, R.B. Complement C4bC2 complex formation: an investigation by surface plasmon resonance. Biochim. Biophys. Acta 1544, 96–112 (2001).

    Article  CAS  Google Scholar 

  32. Fearon, D.T. & Austen, K.F. Properdin: binding to C3b and stabilization of the C3b-dependent C3 convertase. J. Exp. Med. 142, 856–863 (1975).

    Article  CAS  Google Scholar 

  33. Riedemann, N.C. & Ward, P.A. Complement in ischemia reperfusion injury. Am. J. Pathol. 162, 363–367 (2003).

    Article  Google Scholar 

  34. Sahu, A. & Lambris, J.D. Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. Immunopharmacology 49, 133–148 (2000).

    Article  CAS  Google Scholar 

  35. Nilsson, B. et al. Compstatin inhibits complement and cellular activation in whole blood in two models of extracorporeal circulation. Blood 92, 1661–1667 (1998).

    CAS  PubMed  Google Scholar 

  36. Kaya, Z. et al. Contribution of the innate immune system to autoimmune myocarditis: a role for complement. Nat. Immunol. 2, 739–745 (2001).

    Article  CAS  Google Scholar 

  37. Veldkamp, K.E., Heezius, H.C., Verhoef, J., van Strijp, J.A.G. & van Kessel, K.P.M. Modulation of neutrophil chemokine receptors by Staphylococcus aureus supernate. Infect. Immun. 68, 5908–5913 (2000).

    Article  CAS  Google Scholar 

  38. Ponnuraj, K. et al. Structural analysis of engineered Bb fragment of complement factor B: insights into the activation mechanism of the alternative pathway C3-convertase. Mol. Cell 14, 17–28 (2004).

    Article  CAS  Google Scholar 

  39. Haas, P.J. et al. N-terminal residues of the chemotaxis inhibitory protein of Staphylococcus aureus are essential for blocking formylated peptide receptor but not C5a receptor. J. Immunol. 173, 5704–5711 (2004).

    Article  CAS  Google Scholar 

  40. Kaneko, J., Kimura, T., Narita, S., Tomita, T. & Kamio, Y. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phi PVL carrying Panton-Valentine leukocidin genes. Gene 215, 57–67 (1998).

    Article  CAS  Google Scholar 

  41. Van Wamel, W.J.B., Van Rossum, G., Verhoef, J., Vandenbroucke-Grauls, C.M. & Fluit, A.C. Cloning and characterization of an accessory gene regulator (agr)-like locus from Staphylococcus epidermidis. FEMS Microbiol Lett. 163, 1–9 (1998).

    Article  CAS  Google Scholar 

  42. Mollnes, T.E. et al. Essential role of the C5a receptor in E. coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100, 1869–1877 (2002).

    CAS  PubMed  Google Scholar 

  43. He, S., Yang, J.C., Tsang, S., Sim, R.B. & Whaley, K. Role of the distal hinge region of C1-inhibitor in the regulation of C1s activity. FEBS Lett. 412, 506–510 (1997).

    Article  CAS  Google Scholar 

  44. Ambrus, G. et al. Natural substrates and inhibitors of mannan-binding lectin-associated serine protease-1 and -2: a study on recombinant catalytic fragments. J. Immunol. 170, 1374–1382 (2003).

    Article  CAS  Google Scholar 

  45. Schreiber, R.D., Pangburn, M.K., Lesavre, P.H. & Muller-Eberhard, H.J. Initiation of the alternative pathway of complement: recognition of activators by bound C3b and assembly of the entire pathway from six isolated proteins. Proc. Natl. Acad. Sci. USA 75, 3948–3952 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Jansen for reviewing the manuscript, and L. de Graaf-Miltenburg for purification of factor B and C3. Supported by the European Union (LSHM-CT-2004-512093 and QLG1-CT-2001-01039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzan H M Rooijakkers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Specificity of anti-SCIN antibodies. (PDF 92 kb)

Supplementary Fig. 2

SCIN interferes with formation and proteolytic activity of C3 convertases. (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rooijakkers, S., Ruyken, M., Roos, A. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6, 920–927 (2005). https://doi.org/10.1038/ni1235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing