Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of human CD1d with and without α-galactosylceramide

Abstract

The glycolipid α-galactosylceramide binds with high affinity to CD1d and stimulates natural killer T cells. Here we report the crystal structure of human CD1d in complex with synthetic α-galactosylceramide at a resolution of 3.0 Å. The structure shows a tightly fit lipid in the CD1d binding groove, with the sphingosine chain bound in the C′ pocket and the longer acyl chain anchored in the A′ pocket. We also present the CD1d structure without lipid, which has a more open conformation of the binding groove, suggesting a dual conformation of CD1d in which the 'open' conformation is more able to load lipids. These structures provide clues as to how CD1 molecules load glycolipids as well as data to guide the design of new therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of human CD1d with α-GalCer.
Figure 2: Antigen binding and recognition of α-GalCer in CD1d.
Figure 3: Comparison of the structures of CD1 molecules and their lipid antigens.
Figure 4: Lipid-binding grooves of CD1 and MHC class I molecules.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Porcelli, S.A. & Modlin, R.L. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol. 17, 297–329 (1999).

    Article  CAS  Google Scholar 

  2. Bendelac, A., Rivera, M.N., Park, S.H. & Roark, J.H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  Google Scholar 

  3. Calabi, F., Jarvis, J.M., Martin, L. & Milstein, C. Two classes of CD1 genes. Eur. J. Immunol. 19, 285–292 (1989).

    Article  CAS  Google Scholar 

  4. Beckman, E.M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691–694 (1994).

    Article  CAS  Google Scholar 

  5. Sieling, P.A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227–230 (1995).

    Article  CAS  Google Scholar 

  6. Moody, D.B. et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278, 283–286 (1997).

    Article  CAS  Google Scholar 

  7. Moody, D.B. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404, 884–888 (2000).

    Article  CAS  Google Scholar 

  8. Naidenko, O.V., Koezuka, Y. & Kronenberg, M. CD1-mediated antigen presentation of glycosphingolipids. Microbes Infect. 2, 621–631 (2000).

    Article  CAS  Google Scholar 

  9. Gilleron, M. et al. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J. Exp. Med. 199, 649–659 (2004).

    Article  CAS  Google Scholar 

  10. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 (1999).

    Article  CAS  Google Scholar 

  11. Shamshiev, A. et al. Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med. 195, 1013–1021 (2002).

    Article  CAS  Google Scholar 

  12. Gumperz, J.E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  Google Scholar 

  13. Wu, D.Y., Segal, N.H., Sidobre, S., Kronenberg, M. & Chapman, P.B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198, 173–181 (2003).

    Article  CAS  Google Scholar 

  14. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  Google Scholar 

  15. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  Google Scholar 

  16. Moody, D.B. & Porcelli, S.A. Intracellular pathways of CD1 antigen presentation. Nat. Rev. Immunol. 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  17. Zeng, Z. et al. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    Article  CAS  Google Scholar 

  18. Gadola, S.D. et al. Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol. 3, 721–726 (2002).

    Article  CAS  Google Scholar 

  19. Batuwangala, T. et al. The crystal structure of human CD1b with a bound bacterial glycolipid. J. Immunol. 172, 2382–2388 (2004).

    Article  CAS  Google Scholar 

  20. Zajonc, D.M., Elsliger, M.A., Teyton, L. & Wilson, I.A. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nat. Immunol. 4, 808–815 (2003).

    Article  CAS  Google Scholar 

  21. Zajonc, D.M. et al. Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22, 209–219 (2005).

    Article  CAS  Google Scholar 

  22. Lawton, A.P. & Kronenberg, M. The third way: progress on pathways of antigen processing and presentation by CD1. Immunol. Cell Biol. 82, 295–306 (2004).

    Article  CAS  Google Scholar 

  23. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  24. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  Google Scholar 

  25. Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  Google Scholar 

  26. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  Google Scholar 

  27. Godfrey, D.I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  CAS  Google Scholar 

  28. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  Google Scholar 

  29. Oki, S., Chiba, A., Yamamura, T. & Miyake, S. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest. 113, 1631–1640 (2004).

    Article  CAS  Google Scholar 

  30. Yu, K.O. et al. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl. Acad. Sci. USA 102, 3383–3388 (2005).

    Article  CAS  Google Scholar 

  31. Karadimitris, A. et al. Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc. Natl. Acad. Sci. USA 98, 3294–3298 (2001).

    Article  CAS  Google Scholar 

  32. Stanic, A.K. et al. Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T(iNKT) cell receptor. J. Immunol. 171, 4539–4551 (2003).

    Article  CAS  Google Scholar 

  33. Sidobre, S. et al. The T cell antigen receptor expressed by Vα14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proc. Natl. Acad. Sci. USA 101, 12254–12259 (2004).

    Article  CAS  Google Scholar 

  34. Wu, D. et al. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc. Natl. Acad. Sci. USA 102, 1351–1356 (2005).

    Article  CAS  Google Scholar 

  35. Brossay, L. et al. Structural requirements for galactosylceramide recognition by CD1-restricted NK T cells. J. Immunol. 161, 5124–5128 (1998).

    CAS  PubMed  Google Scholar 

  36. Burdin, N. et al. Structural requirements for antigen presentation by mouse CD1. Proc. Natl. Acad. Sci. USA 97, 10156–10161 (2000).

    Article  CAS  Google Scholar 

  37. Sidobre, S. et al. The V alpha 14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J. Immunol. 169, 1340–1348 (2002).

    Article  CAS  Google Scholar 

  38. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  Google Scholar 

  39. Altamirano, M.M. et al. Ligand-independent assembly of recombinant human CD1 by using oxidative refolding chromatography. Proc. Natl. Acad. Sci. USA 98, 3288–3293 (2001).

    Article  CAS  Google Scholar 

  40. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  41. Ortaldo, J.R. et al. Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J. Immunol. 172, 943–953 (2004).

    Article  CAS  Google Scholar 

  42. Parekh, V.V. et al. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J. Immunol. 173, 3693–3706 (2004).

    Article  CAS  Google Scholar 

  43. Naidenko, O.V. et al. Binding and antigen presentation of ceramide-containing glycolipids by soluble mouse and human CD1d molecules. J. Exp. Med. 190, 1069–1080 (1999).

    Article  CAS  Google Scholar 

  44. Schmieg, J., Yang, G., Franck, R.W. & Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide. J. Exp. Med. 198, 1631–1641 (2003).

    Article  CAS  Google Scholar 

  45. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  Google Scholar 

  46. Springer, S., Doring, K., Skipper, J.C., Townsend, A.R. & Cerundolo, V. Fast association rates suggest a conformational change in the MHC class I molecule H-2Db upon peptide binding. Biochemistry 37, 3001–3012 (1998).

    Article  CAS  Google Scholar 

  47. Kang, S.J. & Cresswell, P. Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat. Immunol. 5, 175–181 (2004).

    Article  CAS  Google Scholar 

  48. Zhou, D. et al. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523–527 (2004).

    Article  CAS  Google Scholar 

  49. Spada, F.M., Koezuka, Y. & Porcelli, S.A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188, 1529–1534 (1998).

    Article  CAS  Google Scholar 

  50. Riese, R.J. et al. Regulation of CD1 function and NK1.1+ T cell selection and maturation by cathepsin S. Immunity 15, 909–919 (2001).

    Article  CAS  Google Scholar 

  51. Chiu, Y.H. et al. Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat. Immunol. 3, 55–60 (2002).

    Article  CAS  Google Scholar 

  52. Fujii, S., Liu, K., Smith, C., Bonito, A.J. & Steinman, R.M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199, 1607–1618 (2004).

    Article  CAS  Google Scholar 

  53. Silk, J.D. et al. Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J. Clin. Invest. 114, 1800–1811 (2004).

    Article  CAS  Google Scholar 

  54. Figueroa-Perez, S. & Schmidt, R.R. Total synthesis of α-galactosyl cerebroside. Carbohydr. Res. 328, 95–102 (2000).

    Article  CAS  Google Scholar 

  55. Walter, T.S. et al. A procedure for setting up high-throughput nanolitre crystallization experiments. I. Protocol design and validation. J. Appl. Crystallogr. 36, 308–314 (2003).

    Article  CAS  Google Scholar 

  56. He, X.L. et al. Structural snapshot of aberrant antigen presentation linked to autoimmunity: the immunodominant epitope of MBP complexed with I-Au. Immunity 17, 83–94 (2002).

    Article  CAS  Google Scholar 

  57. Diederichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269–275 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Esnouf for help with the program VOLUMES and figures; J. Grimes and P. Salgado for assistance with crystallographic programs; D. Stuart for discussions; K. Harlos and the staff of the European Synchrotron Radiation Facility and European Molecular Biology Laboratory (Grenoble, France) for assistance with X-ray data collection. We acknowledge use of crystallization facilities provided by the Medical Research Council–funded Oxford Protein Production Facility and The European Commission Integrated Programme (SPINE; QLRT-2001-00988). Supported by Cancer Research UK (C399-A2291 to V.C., C375-A2320 to E.Y.J. and C399/A3213 to V.S.S.), the US Cancer Research Institute, the UK Medical Research Council (M.K.) and Overseas Research Scheme (V.S.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Yvonne Jones or Vincenzo Cerundolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The sugar head-group of the α-GalCer. (PDF 137 kb)

Supplementary Fig. 2

Packing of the hCD1d molecules within the crystal lattice. (PDF 131 kb)

Supplementary Fig. 3

FPLC profile of hCD1d-β2M refolding reactions in the presence and absence of α-GalCer. (PDF 86 kb)

Supplementary Fig. 4

Omit maps for the binding grooves of the two hCD1d molecules. (PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, M., Stronge, V., Shepherd, D. et al. The crystal structure of human CD1d with and without α-galactosylceramide. Nat Immunol 6, 819–826 (2005). https://doi.org/10.1038/ni1225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing