Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mammalian defensins in the antimicrobial immune response

Abstract

Defensins are peptidic components of the innate immune system of plants and animals. In mammals, defensins have evolved to have a central function in the host defense properties of granulocytic leukocytes, mucosal surfaces, skin and other epithelia. This review focuses on the biological functions of three structural subgroups of mammalian defensins and the evidence for their involvement as effectors of antimicrobial innate immunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defensin genes and peptides.
Figure 2: Constitutive expression of α- and β-defensins.
Figure 3: Mobilization, induction and interactions of defensins.

References

  1. Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. & Ezekowitz, R.A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Janeway, C.A., Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Levy, O. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J. Leukoc. Biol. 76, 909–925 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, D., Biragyn, A., Hoover, D.M., Lubkowski, J. & Oppenheim, J.J. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22, 181–215 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75, 39–48 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Lehrer, R.I. Primate defensins. Nat. Rev. Microbiol. 2, 727–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Schutte, B.C. & McCray, P.B., Jr. β-defensins in lung host defense. Annu. Rev. Physiol. 64, 709–748 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Patil, A., Hughes, A.L. & Zhang, G. Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes. Physiol. Genomics 20, 1–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Semple, C.A., Rolfe, M. & Dorin, J.R. Duplication and selection in the evolution of primate beta-defensin genes. Genome Biol. 4, R31 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taudien, S. et al. Polymorphic segmental duplications at 8p23.1 challenge the determination of individual defensin gene repertoires and the assembly of a contiguous human reference sequence. BMC Genomics 5, 92 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lynn, D.J., Lloyd, A.T., Fares, M.A. & O'Farrelly, C. Evidence of positively selected sites in mammalian α-defensins. Mol. Biol. Evol. 21, 819–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Leonova, L. et al. Circular minidefensins and posttranslational generation of molecular diversity. J. Leukoc. Biol. 70, 461–464 (2001).

    CAS  PubMed  Google Scholar 

  15. Tang, Y.Q. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286, 498–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Tran, D. et al. Homodimeric θ-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J. Biol. Chem. 277, 3079–3084 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen, T.X., Cole, A.M. & Lehrer, R.I. Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides 24, 1647–1654 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Cole, A.M. et al. Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc. Natl. Acad. Sci. USA 99, 1813–1818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeya, H.I. & Spitznagel, J.K. Antimicrobial specificity of leukocyte lysosomal cationic proteins. Science 154, 1049–1051 (1966).

    Article  CAS  PubMed  Google Scholar 

  20. Eisenhauer, P.B. & Lehrer, R.I. Mouse neutrophils lack defensins. Infect. Immun. 60, 3446–3447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mackewicz, C.E. et al. alpha-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17, F23–F32 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Chalifour, A. et al. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers α-defensin production. Blood 104, 1778–1783 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Wilson, C.L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Ghosh, D. et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat. Immunol. 3, 583–590 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, E.R., Daniel, R. & Bateman, A. RK-2: a novel rabbit kidney defensin and its implications for renal host defense. Peptides 19, 793–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Satchell, D.P. et al. Interactions of mouse Paneth cell α-defensins and α-defensin precursors with membranes. Prosegment inhibition of peptide association with biomimetic membranes. J. Biol. Chem. 278, 13838–13846 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Valore, E.V. & Ganz, T. Posttranslational processing of defensins in immature human myeloid cells. Blood 79, 1538–1544 (1992).

    CAS  PubMed  Google Scholar 

  28. Wu, Z. et al. From pro defensins to defensins: synthesis and characterization of human neutrophil pro α-defensin-1 and its mature domain. J. Pept. Res. 62, 53–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Daher, K.A., Selsted, M.E. & Lehrer, R.I. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068–1074 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mandal, M. & Nagaraj, R. Antibacterial activities and conformations of synthetic α-defensin HNP-1 and analogs with one, two and three disulfide bridges. J. Pept. Res. 59, 95–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Maemoto, A. et al. Functional analysis of the α-defensin disulfide array in mouse cryptdin-4. J. Biol. Chem. 279, 44188–44196 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Wu, Z. et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc. Natl. Acad. Sci. USA 100, 8880–8885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Diamond, G. et al. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: Peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. USA 88, 3952–3956 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Diamond, G. & Bevins, C.L. Endotoxin upregulates expression of an antimicrobial peptide gene in mammalian airway epithelial cells. Chest 105, 51S–52S (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Selsted, M.E. et al. Purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. 268, 6641–6648 (1993).

    CAS  PubMed  Google Scholar 

  36. Schutte, B.C. et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc. Natl. Acad. Sci. USA 99, 2129–2133 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodriguez-Jimenez, F.J. et al. Distribution of new human β-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics 81, 175–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, C.X. et al. An epididymis-specific β-defensin is important for the initiation of sperm maturation. Nat. Cell Biol. 6, 458–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Yudin, A.I. et al. ESP13.2, a member of the β-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process. Biol. Reprod. 69, 1118–1128 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Bensch, K.W., Raida, M., Magert, H.J., Schulz-Knappe, P. & Forssmann, W.G. hBD-1: a novel β-defensin from human plasma. FEBS Lett. 368, 331–335 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Valore, E.V. et al. Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. 101, 1633–1642 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harder, J., Bartels, J., Christophers, E. & Schroder, J.M. A peptide antibiotic from human skin. Nature 387, 861 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Harder, J., Bartels, J., Christophers, E. & Schroder, J.M. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276, 5707–5713 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Harder, J. & Schroder, J.M. Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J. Leukoc. Biol. 77, 476–486 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Garcia, J.R. et al. Human β-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819–1821 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Hiratsuka, T. et al. Increased concentrations of human β-defensins in plasma and bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Thorax 58, 425–430 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ross, D.J. et al. Increased bronchoalveolar lavage human β-defensin type 2 in bronchiolitis obliterans syndrome after lung transplantation. Transplantation 78, 1222–1224 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Ong, P.Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 347, 1151–1160 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Ganz, T. Extracellular release of antimicrobial defensins by human polymorphonulear leukocytes. Infect. Immun. 55, 568–571 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ayabe, T. et al. Modulation of mouse Paneth cell α-defensin secretion by mIKCa1, a Ca2+-activated, intermediate conductance potassium channel. J. Biol. Chem. 277, 3793–3800 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Rumio, C. et al. Degranulation of paneth cells via Toll-like receptor 9. Am. J. Pathol. 165, 373–381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duits, L.A., Ravensbergen, B., Rademaker, M., Hiemstra, P.S. & Nibbering, P.H. Expression of β-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106, 517–525 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fang, X.M. et al. Differential expression of α- and β-defensins in human peripheral blood. Eur. J. Clin. Invest. 33, 82–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Harder, J., Meyer-Hoffert, U., Wehkamp, K., Schwichtenberg, L. & Schroder, J.M. Differential gene induction of human β-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J. Invest. Dermatol. 123, 522–529 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Singh, P.K. et al. Production of β-defensins by human airway epithelia. Proc. Natl. Acad. Sci. USA 95, 14961–14966 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsutsumi-Ishii, Y. & Nagaoka, I. Modulation of human β-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J. Immunol. 170, 4226–4236 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, L., Roberts, A.A. & Ganz, T. By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J. Immunol. 170, 575–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, T.T. et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 173, 2909–2912 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity 21, 241–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Hertz, C.J. et al. Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human β defensin-2. J. Immunol. 171, 6820–6826 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, X. et al. Airway epithelia regulate expression of human β-defensin 2 through Toll-like receptor 2. FASEB J. 17, 1727–1729 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Vora, P. et al. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J. Immunol. 173, 5398–5405 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Schaefer, T.M., Fahey, J.V., Wright, J.A. & Wira, C.R. Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J. Immunol. 174, 992–1002 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Proud, D., Sanders, S.P. & Wiehler, S. Human rhinovirus infection induces airway epithelial cell production of human β-defensin 2 both in vitro and in vivo. J. Immunol. 172, 4637–4645 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Platz, J. et al. Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J. Immunol. 173, 1219–1223 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Chung, W.O., Hansen, S.R., Rao, D. & Dale, B.A. Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. J. Immunol. 173, 5165–5170 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Ganz, T., Selsted, M.E. & Lehrer, R.I. Antimicrobial activity of phagocyte granule proteins. Sem. Resp. Infect. 1, 107–117 (1986).

    CAS  Google Scholar 

  69. Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1, 113–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Salzman, N.H., Ghosh, D., Huttner, K.M., Paterson, Y. & Bevins, C.L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Moser, C. et al. β-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70, 3068–3072 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morrison, G., Kilanowski, F., Davidson, D. & Dorin, J. Characterization of the mouse β defensin 1, Defb1, mutant mouse model. Infect. Immun. 70, 3053–3060 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bader, M.W. et al. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol. Microbiol. 50, 219–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Lehrer, R.I., Szklarek, D., Ganz, T. & Selsted, M.E. Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity. Infect. Immun. 49, 207–211 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lehrer, R.I., Ganz, T., Szklarek, D. & Selsted, M.E. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J. Clin. Invest. 81, 1829–1835 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lehrer, R.I. et al. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84, 553–561 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boniotto, M. et al. A study of host defence peptide β-defensin 3 in primates. Biochem. J. 374, 707–714 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Edgerton, M. et al. Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways. Antimicrob. Agents Chemother. 44, 3310–3316 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Helmerhorst, E.J. et al. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J. Biol. Chem. 274, 7286–7291 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Sahl, H.G. et al. Mammalian defensins: structures and mechanism of antibiotic activity. J. Leukoc. Biol. 77, 466–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Panyutich, A.V., Voitenok, N.N., Lehrer, R.I. & Ganz, T. An enzyme immunoassay for human defensins. J. Immunol. Methods 141, 149–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Kagan, B.L., Selsted, M.E., Ganz, T. & Lehrer, R.I. antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 87, 210–214 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lohner, K., Latal, A., Lehrer, R.I. & Ganz, T. Differential scanning microcalorimetry indicates that human defensin, HNP-2, interacts specifically with biomembrane mimetic systems. Biochemistry 36, 1525–1531 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Wimley, W.C., Selsted, M.E. & White, S.H. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 3, 1362–1373 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hristova, K., Selsted, M.E. & White, S.H. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem. 272, 24224–24233 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Trabi, M., Schirra, H.J. & Craik, D.J. Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes. Biochemistry 40, 4211–4221 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Abuja, P.M., Zenz, A., Trabi, M., Craik, D.J. & Lohner, K. The cyclic antimicrobial peptide RTD-1 induces stabilized lipid-peptide domains more efficiently than its open-chain analogue. FEBS Lett. 566, 301–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Weiss, T.M. et al. Two states of cyclic antimicrobial peptide RTD-1 in lipid bilayers. Biochemistry 41, 10070–10076 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Buffy, J.J. et al. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1. Biochemistry 43, 9800–9812 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Munk, C. et al. The θ-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res. Hum. Retroviruses 19, 875–881 (2003).

    Article  PubMed  CAS  Google Scholar 

  91. Wang, W., Cole, A.M., Hong, T., Waring, A.J. & Lehrer, R.I. Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. 170, 4708–4716 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Territo, M.C., Ganz, T., Selsted, M.E. & Lehrer, R.I. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Invest. 84, 2017–2020 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chertov, O. et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271, 2935–2940 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Yang, D., Chen, Q., Chertov, O. & Oppenheim, J.J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol. 68, 9–14 (2000).

    CAS  PubMed  Google Scholar 

  95. Yang, D. et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Garcia, J.R. et al. Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 306, 257–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, D., Biragyn, A., Kwak, L.W. & Oppenheim, J.J. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Befus, A.D. et al. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J. Immunol. 163, 947–953 (1999).

    CAS  PubMed  Google Scholar 

  99. Niyonsaba, F., Iwabuchi, K., Matsuda, H., Ogawa, H. & Nagaoka, I. Epithelial cell-derived human β-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int. Immunol. 14, 421–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Murphy, C.J., Foster, B.A., Mannis, M.J., Selsted, M.E. & Reid, T.W. Defensins are mitogenic for epithelial cells and fibroblasts. J. Cell. Physiol. 155, 408–413 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Aarbiou, J. et al. Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J. Leukoc. Biol. 72, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  102. Chavakis, T. et al. Regulation of neovascularization by human neutrophil peptides (α-defensins): a link between inflammation and angiogenesis. FASEB J. 18, 1306–1308 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Aarbiou, J. et al. Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am. J. Respir. Cell Mol. Biol. 30, 193–201 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Ching for assistance in preparing figures. Supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E Selsted.

Ethics declarations

Competing interests

M.E.S. is a co-founder of Resolve Therapeutics, which intends to commercialize θ-defensins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selsted, M., Ouellette, A. Mammalian defensins in the antimicrobial immune response. Nat Immunol 6, 551–557 (2005). https://doi.org/10.1038/ni1206

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing