Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cell costimulation by chemokine receptors

Abstract

Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell–antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to Gq and/or G11 protein were recruited to the immunological synapse by a Gi-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell–antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CCR5 is recruited to the T cell IS.
Figure 2: CCR5 recruitment to the T cell–APC contact site requires the formation of a productive IS.
Figure 3: Recruitment of chemokine receptors to the IS depends on chemokines released by APCs.
Figure 4: CCR5 engaged at the IS is coupled to Gq and/or G11.
Figure 5: Chemokine receptor recruitment to the IS reduces T cell responsiveness to chemoattractants.
Figure 6: CCR7 is not recruited to the IS.
Figure 7: Chemokine receptors enhance T cell activation.

Similar content being viewed by others

References

  1. Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  Google Scholar 

  2. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  Google Scholar 

  3. Wong, M.M. & Fish, E.N. Chemokines: attractive mediators of the immune response. Semin. Immunol. 15, 5–14 (2003).

    Article  CAS  Google Scholar 

  4. Tybulewicz, V.L. Chemokines and the immunological synapse. Immunology 106, 287–288 (2002).

    Article  CAS  Google Scholar 

  5. Dustin, M.L. Stop and go traffic to tune T cell responses. Immunity 21, 305–314 (2004).

    Article  CAS  Google Scholar 

  6. Bromley, S.K., Peterson, D.A., Gunn, M.D. & Dustin, M.L. Cutting edge: hierarchy of chemokine receptor and TCR signals regulating T cell migration and proliferation. J. Immunol. 165, 15–19 (2000).

    Article  CAS  Google Scholar 

  7. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  8. Dustin, M.L. & Shaw, A.S. Costimulation: building an immunological synapse. Science 283, 649–650 (1999).

    Article  CAS  Google Scholar 

  9. Gomez-Mouton, C. et al. Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J. Cell Biol. 164, 759–768 (2004).

    Article  CAS  Google Scholar 

  10. Manes, S. & Martinez, A.C. Cholesterol domains regulate the actin cytoskeleton at the leading edge of moving cells. Trends Cell Biol. 14, 275–278 (2004).

    Article  CAS  Google Scholar 

  11. Manes, S., Ana Lacalle, R., Gomez-Mouton, C. & Martinez, A.C. From rafts to crafts: membrane asymmetry in moving cells. Trends Immunol. 24, 320–326 (2003).

    Article  CAS  Google Scholar 

  12. Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).

    Article  CAS  Google Scholar 

  13. Tang, H.L. & Cyster, J.G. Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284, 819–822 (1999).

    Article  CAS  Google Scholar 

  14. McColl, S.R. Chemokines and dendritic cells: a crucial alliance. Immunol. Cell Biol. 80, 489–496 (2002).

    Article  CAS  Google Scholar 

  15. Nakayama, T. et al. Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein-Barr virus. J. Virol. 78, 1665–1674 (2004).

    Article  CAS  Google Scholar 

  16. Mira, E. et al. A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep. 2, 151–156 (2001).

    Article  CAS  Google Scholar 

  17. Guan, E., Wang, J. & Norcross, M.A. Identification of human macrophage inflammatory proteins 1α and 1β as a native secreted heterodimer. J. Biol. Chem. 276, 12404–12409 (2001).

    Article  CAS  Google Scholar 

  18. Mellado, M., Rodriguez-Frade, J.M., Manes, S. & Martinez, A.C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu. Rev. Immunol. 19, 397–421 (2001).

    Article  CAS  Google Scholar 

  19. Rodriguez-Frade, J.M., Mellado, M. & Martinez, A.C. Chemokine receptor dimerization: two are better than one. Trends Immunol. 22, 612–617 (2001).

    Article  CAS  Google Scholar 

  20. Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4, 749–755 (2003).

    Article  CAS  Google Scholar 

  21. Timmerman, L.A., Clipstone, N.A., Ho, S.N., Northrop, J.P. & Crabtree, G.R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383, 837–840 (1996).

    Article  CAS  Google Scholar 

  22. Sallusto, F., Mackay, C.R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

    Article  CAS  Google Scholar 

  23. Harding, C.V. & Unanue, E.R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346, 574–576 (1990).

    Article  CAS  Google Scholar 

  24. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T.J. & Eisen, H.N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996).

    Article  CAS  Google Scholar 

  25. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  Google Scholar 

  26. Mellado, M. et al. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 20, 2497–2507 (2001).

    Article  CAS  Google Scholar 

  27. Boss, V., Talpade, D.J. & Murphy, T.J. Induction of NFAT-mediated transcription by Gq-coupled receptors in lymphoid and non-lymphoid cells. J. Biol. Chem. 271, 10429–10432 (1996).

    Article  CAS  Google Scholar 

  28. Bromley, S.K. & Dustin, M.L. Stimulation of naive T-cell adhesion and immunological synapse formation by chemokine-dependent and -independent mechanisms. Immunology 106, 289–298 (2002).

    Article  CAS  Google Scholar 

  29. Oh, P. & Schnitzer, J.E. Segregation of heterotrimeric G proteins in cell surface microdomains. Gq binds caveolin to concentrate in caveolae, whereas Gi and Gs target lipid rafts by default. Mol. Biol. Cell 12, 685–698 (2001).

    Article  CAS  Google Scholar 

  30. Chini, B. & Parenti, M. G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J. Mol. Endocrinol. 32, 325–338 (2004).

    Article  CAS  Google Scholar 

  31. Rimoldi, V. et al. Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains. Oncogene 22, 6054–6060 (2003).

    Article  CAS  Google Scholar 

  32. Pizzo, P. & Viola, A. Lipid rafts in lymphocyte activation. Microbes Infect. 6, 686–692 (2004).

    Article  CAS  Google Scholar 

  33. Gomez-Mouton, C. et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl. Acad. Sci. USA 98, 9642–9647 (2001).

    Article  CAS  Google Scholar 

  34. Kveberg, L., Bryceson, Y., Inngjerdingen, M., Rolstad, B. & Maghazachi, A.A. Sphingosine 1 phosphate induces the chemotaxis of human natural killer cells. Role for heterotrimeric G proteins and phosphoinositide 3 kinases. Eur. J. Immunol. 32, 1856–1864 (2002).

    Article  CAS  Google Scholar 

  35. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    Article  CAS  Google Scholar 

  36. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  Google Scholar 

  37. Burack, W.R., Lee, K.H., Holdorf, A.D., Dustin, M.L. & Shaw, A.S. Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J. Immunol. 169, 2837–2841 (2002).

    Article  CAS  Google Scholar 

  38. Godessart, N. & Kunkel, S.L. Chemokines in autoimmune disease. Curr. Opin. Immunol. 13, 670–675 (2001).

    Article  CAS  Google Scholar 

  39. Carvalho-Pinto, C. et al. Leukocyte attraction through the CCR5 receptor controls progress from insulitis to diabetes in non-obese diabetic mice. Eur. J. Immunol. 34, 548–557 (2004).

    Article  CAS  Google Scholar 

  40. Frigerio, S. et al. Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nat. Med. 8, 1414–1420 (2002).

    Article  CAS  Google Scholar 

  41. Giarratana, N. et al. A vitamin D analog down-regulates proinflammatory chemokine production by pancreatic islets inhibiting T cell recruitment and type 1 diabetes development. J. Immunol. 173, 2280–2287 (2004).

    Article  CAS  Google Scholar 

  42. Buckley, C.D. et al. Persistent induction of the chemokine receptor CXCR4 by TGF-β1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J. Immunol. 165, 3423–3429 (2000).

    Article  CAS  Google Scholar 

  43. Nanki, T. et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J. Immunol. 165, 6590–6598 (2000).

    Article  CAS  Google Scholar 

  44. Tavano, R. et al. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J. Immunol. 173, 5392–5397 (2004).

    Article  CAS  Google Scholar 

  45. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Pozzan for support. Supported by the Italian Ministry of Health (Ricerca finalizzata), US Army (DAMD17-03-1-0032), Italian Association for Cancer Research and University of Padua Progetto d'Ateneo (A.V.); and the Spanish Ministry of Science and Education and Fundación Lilly (C.M.). The Department of Immunology and Oncology was founded by and is supported by the Spanish Council for Scientific Research and by Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santos Mañes or Antonella Viola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

CXCR4 recruitment to the T cell–APC contact site requires the formation of a productive IS and of CXCL12 released by APCs. (PDF 831 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molon, B., Gri, G., Bettella, M. et al. T cell costimulation by chemokine receptors. Nat Immunol 6, 465–471 (2005). https://doi.org/10.1038/ni1191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing